Source code for pypeit.spectrographs.p200_dbsp

"""
Module for P200/DBSP specific methods.

.. include:: ../include/links.rst
"""
from typing import List, Optional

import numpy as np

from astropy.io import fits
from astropy.coordinates import Angle
from astropy import units as u
from astropy.time import Time

from pypeit import msgs
from pypeit import io
from pypeit import telescopes
from pypeit.core import framematch
from pypeit.spectrographs import spectrograph
from pypeit.core import parse
from pypeit.images import detector_container


[docs]def flip_fits_slice(s: str) -> str: return '[' + ','.join(s.strip('[]').split(',')[::-1]) + ']'
[docs]class P200DBSPSpectrograph(spectrograph.Spectrograph): """ Child to handle P200/DBSP specific code """ ndet = 1 telescope = telescopes.P200TelescopePar() url = 'https://sites.astro.caltech.edu/palomar/observer/200inchResources/dbspoverview.html'
[docs] def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the PypeIt-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=0, card='RA', required_ftypes=['science', 'standard']) self.meta['dec'] = dict(ext=0, card='DEC', required_ftypes=['science', 'standard']) self.meta['target'] = dict(ext=0, card='OBJECT') self.meta['dispname'] = dict(ext=0, card='GRATING') self.meta['decker'] = dict(ext=0, card='APERTURE') self.meta['binning'] = dict(card=None, compound=True) self.meta['mjd'] = dict(card=None, compound=True) self.meta['exptime'] = dict(ext=0, card='EXPTIME') self.meta['airmass'] = dict(ext=0, card='AIRMASS', required_ftypes=['science', 'standard']) # Extras for config and frametyping self.meta['dichroic'] = dict(ext=0, card='DICHROIC') self.meta['dispangle'] = dict(card=None, rtol=1e-2, compound=True) self.meta['slitwid'] = dict(ext=0, card='APERTURE') self.meta['idname'] = dict(ext=0, card='IMGTYPE') self.meta['instrument'] = dict(ext=0, card='FPA') # Lamps self.meta['lampstat01'] = dict(ext=0, card='LAMPS')
[docs] def compound_meta(self, headarr: List[fits.Header], meta_key: str): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ if meta_key == 'mjd': return Time(headarr[0]['UTSHUT']).mjd elif meta_key == 'dispangle': try: return Angle(headarr[0]['ANGLE'].lower()).deg except Exception as e: msgs.warn("Could not read dispangle from header:" + msgs.newline() + str(headarr[0]['ANGLE'])) raise e else: return None
[docs] def configuration_keys(self): """ Return the metadata keys that define a unique instrument configuration. This list is used by :class:`~pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: :obj:`list`: List of keywords of data pulled from file headers and used to constuct the :class:`~pypeit.metadata.PypeItMetaData` object. """ return ['dispname', 'binning', 'dispangle', 'dichroic']
[docs] def raw_header_cards(self): """ Return additional raw header cards to be propagated in downstream output files for configuration identification. The list of raw data FITS keywords should be those used to populate the :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.configuration_keys` or are used in :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.config_specific_par` for a particular spectrograph, if different from the name of the PypeIt metadata keyword. This list is used by :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.subheader_for_spec` to include additional FITS keywords in downstream output files. Returns: :obj:`list`: List of keywords from the raw data files that should be propagated in output files. """ return ['GRATING', 'ANGLE', 'APERTURE']
[docs] def pypeit_file_keys(self): """ Define the list of keys to be output into a standard PypeIt file. Returns: :obj:`list`: The list of keywords in the relevant :class:`~pypeit.metadata.PypeItMetaData` instance to print to the :ref:`pypeit_file`. """ return super().pypeit_file_keys() + ['slitwid']
[docs] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype in ['science', 'standard']: return good_exp & (fitstbl['lampstat01'] == '0000000') & (fitstbl['idname'] == 'object') if ftype == 'bias': return good_exp & (fitstbl['idname'] == 'bias') if ftype in ['pixelflat', 'trace', 'illumflat']: return good_exp & (fitstbl['idname'] == 'flat') if ftype in ['pinhole', 'dark']: # Don't type pinhole or dark frames return np.zeros(len(fitstbl), dtype=bool) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['lampstat01'] != '0000000') & (fitstbl['idname'] == 'cal') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool)
[docs]class P200DBSPBlueSpectrograph(P200DBSPSpectrograph): """ Child to handle P200/DBSP blue specific code """ name = 'p200_dbsp_blue' camera = 'DBSPb' header_name = 'DBSP_BLUE' supported = True comment = 'Blue camera'
[docs] def compound_meta(self, headarr: List[fits.Header], meta_key: str): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ # Handle dispangle and mjd from superclass method retval = super().compound_meta(headarr, meta_key) # If superclass could not handle the meta key if retval is not None: return retval if meta_key == 'binning': binspatial, binspec = headarr[0]['CCDSUM'].split(' ') return parse.binning2string(binspec, binspatial) msgs.error("Not ready for this compound meta")
[docs] def get_detector_par(self, det: int, hdu: Optional[fits.HDUList] = None): """ Return metadata for the selected detector. .. warning:: Many of the necessary detector parameters are read from the file header, meaning the ``hdu`` argument is effectively **required** for P200/DBSPb. The optional use of ``hdu`` is only viable for automatically generated documentation. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. If not provided, frame-dependent parameters are set to a default. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ if hdu is None: binning = '1,1' datasec = None oscansec = None else: # TODO: Could this be detector dependent?? binning = self.get_meta_value(self.get_headarr(hdu), 'binning') datasec = np.atleast_1d(flip_fits_slice(hdu[0].header['TSEC1'])) oscansec = np.atleast_1d(flip_fits_slice(hdu[0].header['BSEC1'])) # Detector 1 detector_dict = dict( binning = binning, det = 1, dataext = 0, specaxis = 0, specflip = True, spatflip = False, # check platescale = 0.389, darkcurr = 0.0, # e-/pixel/hour saturation = 65000., nonlinear = 62./65., mincounts = -1e10, # cross-check numamplifiers = 1, gain = np.atleast_1d(0.72), ronoise = np.atleast_1d(2.5), datasec = datasec, oscansec = oscansec ) return detector_container.DetectorContainer(**detector_dict)
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() par['scienceframe']['process']['combine'] = 'median' par['calibrations']['standardframe']['process']['combine'] = 'median' # Ignore PCA par['calibrations']['slitedges']['sync_predict'] = 'nearest' par['calibrations']['slitedges']['fit_min_spec_length'] = 0.55 par['scienceframe']['process']['use_overscan'] = True # Make a bad pixel mask par['calibrations']['bpm_usebias'] = True # Set pixel flat combination method par['calibrations']['pixelflatframe']['process']['combine'] = 'median' # Change the wavelength calibration method par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['lamps'] = ['FeI', 'ArI', 'ArII'] #par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] #par['calibrations']['wavelengths']['n_first'] = 3 #par['calibrations']['wavelengths']['n_final'] = 5 #par['calibrations']['wavelengths']['sigdetect'] = 10.0 # Do not flux calibrate par['fluxcalib'] = None # Set the default exposure time ranges for the frame typing par['calibrations']['biasframe']['exprng'] = [None, 0.001] par['calibrations']['darkframe']['exprng'] = [999999, None] # No dark frames par['calibrations']['pinholeframe']['exprng'] = [999999, None] # No pinhole frames par['calibrations']['arcframe']['exprng'] = [None, 120] par['calibrations']['standardframe']['exprng'] = [None, 120] par['scienceframe']['exprng'] = [90, None] par['sensfunc']['UVIS']['nresln'] = 5 return par
[docs] def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. Args: scifile (:obj:`str`): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`~pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set adjusted for configuration specific parameter values. """ # Start with instrument wide par = super().config_specific_par(scifile, inp_par=inp_par) grating = self.get_meta_value(scifile, 'dispname') dichroic = self.get_meta_value(scifile, 'dichroic') angle = Angle(self.get_meta_value(scifile, 'dispangle'), unit=u.deg).rad slitwidth = self.get_meta_value(scifile, 'slitwid') * u.arcsec lines_mm = float(grating.split('/')[0]) / u.mm theta_m = 38.5 * 2*np.pi / 360. - angle order = 2. if lines_mm == 158. * u.mm else 1. platescale = 0.389 * u.arcsec / u.pix pix_size = 15 * u.um disp = np.cos(theta_m)/(lines_mm * 9 * u.imperial.inch) * 1e7 * u.AA / u.mm cen_wv = np.abs(1/lines_mm * (np.sin(theta_m) - np.sin(angle)) / order) dlam = slitwidth / platescale * pix_size / u.pix * disp resolving_power = cen_wv / dlam par['sensfunc']['UVIS']['resolution'] = resolving_power.decompose().value cen_wv_AA = cen_wv.to(u.AA).value high_res_reids = { '1200/5000': { 'D55': { 4700: 'p200_dbsp_blue_1200_5000_d55_4700.fits' }, 'D68': { 6000: 'p200_dbsp_blue_1200_5000_d68_6000.fits' } } } if grating.split("/")[0] == "1200": # high resolution grating! # here we need to select the reid_arxiv that most closely matches the central wavelength # and emit a warning if the difference is too great / the wavelength overlap is too small try: reids = high_res_reids[grating][dichroic] cen_wvs = np.array(list(reids)) best_wv = cen_wvs[np.argmin(np.abs(cen_wvs - cen_wv_AA))] # blue wavelength coverage with a 1200 lines/mm grating is about 1550 A diff = np.abs(best_wv - cen_wv_AA) if diff > 775: msgs.warn("Closest matching archived wavelength solutions" f"differs in central wavelength by {diff:4.0f} A. The" "wavelength solution may be unreliable. If wavelength" "calibration fails, try using the holy grail method by" "adding the following to your PypeIt file:\n" "[calibrations]\n" "\t[[wavelengths]]\n" "\t\tmethod = holy-grail") par['calibrations']['wavelengths']['reid_arxiv'] = reids[best_wv] except KeyError: msgs.warn("Your grating " + grating + " doesn't have a template spectrum for the blue arm of DBSP.") else: if grating == '600/4000' and dichroic == 'D55': par['calibrations']['wavelengths']['reid_arxiv'] = 'p200_dbsp_blue_600_4000_d55.fits' elif grating == '600/4000' and dichroic == 'D68': par['calibrations']['wavelengths']['reid_arxiv'] = 'p200_dbsp_blue_600_4000_d68.fits' elif grating == '300/3990' and dichroic == 'D55': par['calibrations']['wavelengths']['reid_arxiv'] = 'p200_dbsp_blue_300_3990_d55.fits' else: msgs.warn("Your grating " + grating + " doesn't have a template spectrum for the blue arm of DBSP.") return par
[docs]class P200DBSPRedSpectrograph(P200DBSPSpectrograph): """ Child to handle P200/DBSPr red specific code """ name = 'p200_dbsp_red' camera = 'DBSPr' header_name = 'DBSP_RED2' supported = True comment = 'Red camera'
[docs] def compound_meta(self, headarr: List[fits.Header], meta_key: str): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ # Handle dispangle and mjd from superclass method retval = super().compound_meta(headarr, meta_key) # If superclass could not handle the meta key if retval is not None: return retval if meta_key == 'binning': binspec, binspatial = headarr[0]['CCDSUM'].split(' ') return parse.binning2string(binspec, binspatial) else: msgs.error("Not ready for this compound meta")
[docs] def get_detector_par(self, det: int, hdu: Optional[fits.HDUList] = None): """ Return metadata for the selected detector. .. warning:: Many of the necessary detector parameters are read from the file header, meaning the ``hdu`` argument is effectively **required** for P200/DBSPr. The optional use of ``hdu`` is only viable for automatically generated documentation. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. If not provided, frame-dependent parameters are set to a default. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ if hdu is None: binning = '1,1' datasec = None oscansec = None else: # TODO: Could this be detector dependent?? binning = self.get_meta_value(self.get_headarr(hdu), 'binning') datasec = np.atleast_1d(flip_fits_slice(hdu[0].header['TSEC1'])) oscansec = np.atleast_1d(flip_fits_slice(hdu[0].header['BSEC1'])) # Detector 1 detector_dict = dict( binning = binning, det = 1, dataext = 0, specaxis = 1, specflip = False, spatflip = False, # check platescale = 0.293, darkcurr = 0.0, # e-/pixel/hour saturation = 45000., nonlinear = 40./45., mincounts = -1e10, # check numamplifiers = 1, gain = np.atleast_1d(2.8), ronoise = np.atleast_1d(8.5), datasec = datasec, oscansec = oscansec ) return detector_container.DetectorContainer(**detector_dict)
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() # Ignore PCA par['calibrations']['slitedges']['sync_predict'] = 'nearest' par['scienceframe']['process']['combine'] = 'median' par['calibrations']['standardframe']['process']['combine'] = 'median' par['scienceframe']['process']['use_overscan'] = True par['scienceframe']['process']['sigclip'] = 4.0 # Tweaked downward from 4.5. par['scienceframe']['process']['objlim'] = 1.5 # Tweaked downward from 3.0. Same value as Keck KCWI and DEIMOS # Make a bad pixel mask par['calibrations']['bpm_usebias'] = True # Set pixel flat combination method par['calibrations']['pixelflatframe']['process']['combine'] = 'median' # Change the wavelength calibration method par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['lamps'] = ['ArI', 'ArII', 'NeI', 'HeI'] # par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] #par['calibrations']['wavelengths']['n_first'] = 3 #par['calibrations']['wavelengths']['n_final'] = 5 #par['calibrations']['wavelengths']['sigdetect'] = 10.0 # Do not flux calibrate par['fluxcalib'] = None # Set the default exposure time ranges for the frame typing par['calibrations']['biasframe']['exprng'] = [None, 0.001] par['calibrations']['darkframe']['exprng'] = [999999, None] # No dark frames par['calibrations']['pinholeframe']['exprng'] = [999999, None] # No pinhole frames par['calibrations']['arcframe']['exprng'] = [None, 120] par['calibrations']['standardframe']['exprng'] = [None, 120] par['scienceframe']['exprng'] = [90, None] par['sensfunc']['algorithm'] = 'UVIS' par['sensfunc']['UVIS']['polycorrect'] = False par['sensfunc']['IR']['telgridfile'] = 'TellPCA_3000_26000_R10000.fits' return par
[docs] def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. Args: scifile (:obj:`str`): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`~pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set adjusted for configuration specific parameter values. """ # Start with instrument wide par = super().config_specific_par(scifile, inp_par=inp_par) grating = self.get_meta_value(scifile, 'dispname') dichroic = self.get_meta_value(scifile, 'dichroic') angle = Angle(self.get_meta_value(scifile, 'dispangle'), unit=u.deg).rad slitwidth = self.get_meta_value(scifile, 'slitwid') * u.arcsec lines_mm = float(grating.split('/')[0]) / u.mm theta_m = 35.0 * 2*np.pi / 360. - angle order = 1. platescale = 0.293 * u.arcsec / u.pix pix_size = 15 * u.um disp = np.cos(theta_m)/(lines_mm * 12 * u.imperial.inch) * 1e7 * u.AA / u.mm cen_wv = np.abs(1/lines_mm * (np.sin(theta_m) - np.sin(angle)) / order) dlam = slitwidth / platescale * pix_size / u.pix * disp resolving_power = cen_wv / dlam par['sensfunc']['UVIS']['resolution'] = resolving_power.decompose().value cen_wv_AA = cen_wv.to(u.AA).value high_res_reids = { '1200/7100': { 'D68': { 7600: 'p200_dbsp_red_1200_7100_d68.fits', 8200: 'p200_dbsp_red_1200_7100_d68.fits' } }, '1200/9400': { 'D55': { 8800: 'p200_dbsp_red_1200_9400_d55_8800.fits' } } } if grating.split("/")[0] == "1200": # high resolution grating! # here we need to select the reid_arxiv that most closely matches the central wavelength # and emit a warning if the difference is too great / the wavelength overlap is too small try: reids = high_res_reids[grating][dichroic] cen_wvs = np.array(list(reids)) best_wv = cen_wvs[np.argmin(np.abs(cen_wvs - cen_wv_AA))] # red wavelength coverage with a 1200 lines/mm grating is about 1600 A diff = np.abs(best_wv - cen_wv_AA) if diff > 800: msgs.warn("Closest matching archived wavelength solutions" f"differs in central wavelength by {diff:4.0f} A. The" "wavelength solution may be unreliable. If wavelength" "calibration fails, try using the holy grail method by" "adding the following to your PypeIt file:\n" "[calibrations]\n" "\t[[wavelengths]]\n" "\t\tmethod = holy-grail") par['calibrations']['wavelengths']['reid_arxiv'] = reids[best_wv] except KeyError: msgs.warn("Your grating " + grating + " doesn't have a template spectrum for the red arm of DBSP.") else: if grating == '316/7500' and dichroic == 'D55': par['calibrations']['wavelengths']['reid_arxiv'] = 'p200_dbsp_red_316_7500_d55.fits' elif grating == '600/10000' and dichroic == 'D55': par['calibrations']['wavelengths']['reid_arxiv'] = 'p200_dbsp_red_600_10000_d55.fits' else: msgs.warn("Your grating " + grating + " doesn't have a template spectrum for the red arm of DBSP.") return par
[docs] def bpm(self, filename, det, shape=None, msbias=None): """ Override parent bpm function with BPM specific to P200 DBSPr. Parameters ---------- det : int Detector number msbias : numpy.ndarray Processed bias frame used when constructing the bpm (see :func:`bpm_frombias`) Returns ------- bpix : ndarray 0 = ok; 1 = Mask """ msgs.info("Custom bad pixel mask for DBSPr") bpm_img = self.empty_bpm(filename, det, shape=shape) # Fill in bad pixels if a processed bias frame is provided if msbias is not None: return self.bpm_frombias(msbias, bpm_img) # Red CCD detector defect is present in data taken 2020-05-22 # and absent in data taken 2020-04-21 DEFECT_DATE = Time('2020-05-21') # TODO: Model the growth of the detector defect with time. # TODO: Get more precise date range for detector. with io.fits_open(filename) as hdul: if Time(hdul[0].header['UTSHUT']) > DEFECT_DATE: spec_binning = int(self.get_meta_value([hdul[0].header], 'binning').split(',')[0]) bpm_img[464 // spec_binning : 723 // spec_binning, :] = 1 return bpm_img