"""
Module for Keck/NIRES specific methods.
.. include:: ../include/links.rst
"""
import numpy as np
from pypeit import msgs
from pypeit import telescopes
from pypeit.core import framematch
from pypeit.spectrographs import spectrograph
from pypeit.images import detector_container
from IPython import embed
[docs]
class KeckNIRESSpectrograph(spectrograph.Spectrograph):
"""
Child to handle Keck/NIRES specific code
"""
ndet = 1
name = 'keck_nires'
telescope = telescopes.KeckTelescopePar()
camera = 'NIRES'
url = 'https://www2.keck.hawaii.edu/inst/nires/'
header_name = 'NIRES'
pypeline = 'Echelle'
ech_fixed_format = True
supported = True
comment = 'see :doc:`keck_nires`'
[docs]
def get_detector_par(self, det, hdu=None):
"""
Return metadata for the selected detector.
Args:
det (:obj:`int`):
1-indexed detector number. This is not used because NIRES only
has one detector!
hdu (`astropy.io.fits.HDUList`_, optional):
The open fits file with the raw image of interest. If not
provided, frame-dependent parameters are set to a default.
Returns:
:class:`~pypeit.images.detector_container.DetectorContainer`:
Object with the detector metadata.
"""
# Detector 1
detector_dict = dict(
binning='1,1',
det=1,
dataext = 0,
specaxis = 1,
specflip = True,
spatflip=False,
platescale = 0.15,
darkcurr = 468.0, # e-/pixel/hour (=0.13 e-/pixel/s)
saturation = 1e6, # I'm not sure we actually saturate with the DITs???
nonlinear = 0.76,
mincounts = -1e10,
numamplifiers = 1,
gain = np.atleast_1d(3.8),
ronoise = np.atleast_1d(5.0),
datasec = np.atleast_1d('[:,:]'),
oscansec = None, #np.atleast_1d('[980:1024,:]') # Is this a hack??
)
return detector_container.DetectorContainer(**detector_dict)
[docs]
@classmethod
def default_pypeit_par(cls):
"""
Return the default parameters to use for this instrument.
Returns:
:class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by
all of PypeIt methods.
"""
par = super().default_pypeit_par()
# Wavelengths
# 1D wavelength solution
par['calibrations']['wavelengths']['rms_thresh_frac_fwhm'] = 0.136
par['calibrations']['wavelengths']['sigdetect']=5.0
par['calibrations']['wavelengths']['fwhm']= 2.2 # Measured
par['calibrations']['wavelengths']['n_final']= [3,4,4,4,4]
par['calibrations']['wavelengths']['lamps'] = ['OH_NIRES']
#par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation']
par['calibrations']['wavelengths']['method'] = 'reidentify'
# Reidentification parameters
par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_nires.fits'
# par['calibrations']['wavelengths']['ech_fix_format'] = True
# Echelle parameters
par['calibrations']['wavelengths']['echelle'] = True
par['calibrations']['wavelengths']['ech_nspec_coeff'] = 4
par['calibrations']['wavelengths']['ech_norder_coeff'] = 6
par['calibrations']['wavelengths']['ech_sigrej'] = 3.0
par['calibrations']['slitedges']['trace_thresh'] = 10.
par['calibrations']['slitedges']['fit_min_spec_length'] = 0.4
par['calibrations']['slitedges']['left_right_pca'] = True
par['calibrations']['slitedges']['fwhm_gaussian'] = 4.0
# Tilt parameters
par['calibrations']['tilts']['tracethresh'] = 10.0
#par['calibrations']['tilts']['spat_order'] = 3
#par['calibrations']['tilts']['spec_order'] = 3
# Processing steps
turn_off = dict(use_illumflat=False, use_biasimage=False, use_overscan=False,
use_darkimage=False)
par.reset_all_processimages_par(**turn_off)
# Reduce -- Sky-Subtraction
par['reduce']['skysub']['bspline_spacing'] = 0.8
# Reduce -- Extraction
par['reduce']['extraction']['sn_gauss'] = 4.0
# Reduce -- Object finding
#par['reduce']['findobj']['ech_find_nabove_min_snr'] = 1
# Require detection in a single order since given only 5 orders and slitlosses for NIRES, often
# things are only detected in the K-band? Decided not to make this the default.
# Flexure
par['flexure']['spec_method'] = 'skip'
par['scienceframe']['process']['sigclip'] = 20.0
par['scienceframe']['process']['satpix'] ='nothing'
par['reduce']['extraction']['boxcar_radius'] = 0.75 # arcsec
# Set the default exposure time ranges for the frame typing
par['calibrations']['standardframe']['exprng'] = [None, 60]
par['calibrations']['arcframe']['exprng'] = [61, None]
par['calibrations']['tiltframe']['exprng'] = [61, None]
par['scienceframe']['exprng'] = [61, None]
# Sensitivity function parameters
par['sensfunc']['algorithm'] = 'IR'
par['sensfunc']['polyorder'] = 8
par['sensfunc']['IR']['maxiter'] = 2
par['sensfunc']['IR']['telgridfile'] = 'TellPCA_3000_26000_R10000.fits'
# Coadding
par['coadd1d']['wave_method'] = 'log10'
par['coadd2d']['offsets'] = 'header'
return par
[docs]
def configuration_keys(self):
"""
Return the metadata keys that define a unique instrument
configuration.
This list is used by :class:`~pypeit.metadata.PypeItMetaData` to
identify the unique configurations among the list of frames read
for a given reduction.
Returns:
:obj:`list`: List of keywords of data pulled from file headers
and used to constuct the :class:`~pypeit.metadata.PypeItMetaData`
object.
"""
return ['dispname']
[docs]
def get_comb_group(self, fitstbl):
"""
Automatically assign combination groups and background images by parsing
known dither patterns.
This method is used in
:func:`~pypeit.metadata.PypeItMetaData.set_combination_groups`, and
directly modifies the ``comb_id`` and ``bkg_id`` columns in the provided
table.
Specifically here for NIRES, since it's likely to have one set of flat/dark frames for
different targets, this method sets calib = "all" for the flat and dark frames and
assigns different calib values to the science/standard frames of different targets.
Moreover, this method parses from the header the dither pattern of the
science/standard frames in a given calibration group and assigns to each
of them a default ``comb_id`` and ``bkg_id``. The dither patterns used
here are: "ABAB", "ABBA", "ABpat", and "ABC". Note that the frames in
the same dither positions (A positions or B positions) of each "ABAB" or
"ABBA" sequence are 2D coadded (without optimal weighting) before the
background subtraction, while for the other dither patterns (e.g.,
"ABpat"), the frames in the same dither positions are not coadded. The
``comb_id`` and ``bkg_id`` will *not* assigned if:
- the dither offset is zero for every frame in the dither sequence
- the dither pattern recorded in the header is not recognized or set
to NONE or MANUAL.
Args:
fitstbl(`astropy.table.Table`_):
The table with the metadata for all the frames.
Returns:
`astropy.table.Table`_: modified fitstbl.
"""
#TODO incorporate parse_dither_pattern() here.
if 'calib' in fitstbl.keys():
# find index of fitstbl that contains dark, pixelflat, trace, or lampoffflats frames
flat_idx = np.array(['pixelflat' in _tab for _tab in fitstbl['frametype']]) | \
np.array(['trace' in _tab for _tab in fitstbl['frametype']]) | \
np.array(['lampoffflats' in _tab for _tab in fitstbl['frametype']]) | \
np.array(['dark' in _tab for _tab in fitstbl['frametype']])
# set calib for those frames to "all" since it's likely that the same flats are used for different targets
fitstbl['calib'][flat_idx] = 'all'
# initialize target calib
targ_calib = 0
# find index of fitstbl that contains science and standard frames
# where science
sci_idx = np.array(['science' in _tab for _tab in fitstbl['frametype']])
# where standard
std_idx = np.array(['standard' in _tab for _tab in fitstbl['frametype']])
sci_std_idx = [sci_idx, std_idx]
# loop over the science and standard frames
for idx in sci_std_idx:
setups = np.unique(fitstbl[idx]['setup'])
# loop over the setups (generally there is only one setup, but we check anyway)
for setup in setups:
in_cfg = idx & np.array([setup in _set for _set in fitstbl['setup']])
if len(fitstbl[in_cfg]) == 1:
continue
# generally there is only one setup, but different targets. We want to separate those.
# how may targets are in this setup?
targets = np.unique(fitstbl[in_cfg]['target'])
# loop through targets
for targ in targets:
# where this targ
targ_idx = in_cfg & (fitstbl['target'] == targ)
if 'calib' in fitstbl.keys():
# set different calib for different targs
if 'science' in fitstbl['frametype'][targ_idx][0] or \
('standard' in fitstbl['frametype'][targ_idx][0] and 'arc' in fitstbl['frametype'][targ_idx][0]):
fitstbl['calib'][targ_idx] = str(targ_calib)
elif 'standard' in fitstbl['frametype'][targ_idx]:
# find the science frames
sci_in_cfg = sci_idx & np.array([setup in _set for _set in fitstbl['setup']])
if len(fitstbl[sci_in_cfg]) > 0:
# find the closest (in time) science frame to the standard target
close_idx = np.argmin(np.absolute(fitstbl[sci_in_cfg]['mjd'] - fitstbl[targ_idx]['mjd'][0]))
fitstbl['calib'][targ_idx] = fitstbl['calib'][sci_in_cfg][close_idx]
targ_calib += 1
# how many dither patterns are used for the selected science/standard target?
uniq_dithpats = np.unique(fitstbl[targ_idx]['dithpat'])
# loop through the dither patterns
for dpat in uniq_dithpats:
if dpat in ['NONE', 'none', 'MANUAL']:
continue
# where this dpat
dpat_idx = targ_idx & (fitstbl['dithpat'] == dpat)
# get doff
doff = fitstbl[dpat_idx]['dithoff'].data.astype(int)
# compute comb_id
if len(fitstbl[dpat_idx]) > 1 and np.any(doff != 0):
# get default combid and bkgid
combid = np.copy(fitstbl['comb_id'][dpat_idx].data)
bkgid = np.copy(fitstbl['bkg_id'][dpat_idx].data)
dpos = fitstbl[dpat_idx]['dithpos'].data
if dpat == "ABAB":
# find the starting index of the ABAB sequence
dpos_idx = np.where((dpos == "A") & (np.roll(dpos, -1) == "B") &
(np.roll(dpos, -2) == "A") & (np.roll(dpos, -3) == "B"))[0]
for i in dpos_idx:
# make sure that that dither offsets are correct
if i < len(dpos) - 3 and doff[i] == doff[i+2] and doff[i+1] == doff[i+3]:
bkgid[i] = combid[i+1]
bkgid[i+1] = combid[i]
combid[i+2] = combid[i]
bkgid[i+2] = bkgid[i]
combid[i+3] = combid[i+1]
bkgid[i+3] = bkgid[i+1]
elif dpat in ["ABBA", "ABBAprime"]:
# find the starting index of the ABBA sequence
dpos_idx = np.where((dpos == "A") & (np.roll(dpos, -1) == "B") &
(np.roll(dpos, -2) == "B") & (np.roll(dpos, -3) == "A"))[0]
for i in dpos_idx:
# make sure that that dither offsets are correct
if i < len(dpos) - 3 and doff[i] == doff[i+3] and doff[i+1] == doff[i+2]:
bkgid[i] = combid[i+1]
bkgid[i+1] = combid[i]
combid[i+2] = combid[i+1]
bkgid[i+2] = bkgid[i+1]
combid[i+3] = combid[i]
bkgid[i+3] = bkgid[i]
elif dpat == "ABpat":
# find the starting index of the ABpat sequence
dpos_idx = np.where((dpos == "A") & (np.roll(dpos, -1) == "B"))[0]
for i in dpos_idx:
# exclude when np.roll counts the 1st element of dpos to be in a
# sequence with the last element
if i < len(dpos)-1:
bkgid[i] = combid[i+1]
bkgid[i+1] = combid[i]
elif dpat == "ABC":
# find the starting index of the ABC sequence
dpos_idx = np.where((dpos == "A") & (np.roll(dpos, -1) == "B") &
(np.roll(dpos, -2) == "C"))[0]
for i in dpos_idx:
# exclude when np.roll counts the 1st element of dpos to be in a
# sequence with the last element
if i < len(dpos) - 2:
bkgid[i] = combid[i+1]
bkgid[i+1] = combid[i+2]
bkgid[i+2] = combid[i+1]
# assign bkgid for files that are part of an incomplete sequence
for i in range(len(fitstbl[dpat_idx])):
# initialize pos_idx
pos_idx = None
# if A frame doesn't have bkgid assigned
if bkgid[i] == -1 and (fitstbl[dpat_idx]['dithpos'][i] == "A"):
# find B frames to subtract from this A
pos_idx = fitstbl[dpat_idx]['dithpos'] == "B"
# if B frame doesn't have bkgid assigned
elif bkgid[i] == -1 and (fitstbl[dpat_idx]['dithpos'][i] == "B"):
# find A frames to subtract from this B
pos_idx = fitstbl[dpat_idx]['dithpos'] == "A"
# if C frame doesn't have bkgid assigned
elif bkgid[i] == -1 and (fitstbl[dpat_idx]['dithpos'][i] == "C"):
# find A or B frames to subtract from this C
pos_idx = (fitstbl[dpat_idx]['dithpos'] == "A") | (fitstbl[dpat_idx]['dithpos'] == "B")
# assign bkgid
if pos_idx is not None and np.any(pos_idx):
# pick closest (in mjd)
close_idx = np.argmin(np.absolute(fitstbl[dpat_idx][pos_idx]['mjd'] - fitstbl[dpat_idx]['mjd'][i]))
bkgid[i] = combid[pos_idx][close_idx]
fitstbl['bkg_id'][dpat_idx] = bkgid
fitstbl['comb_id'][dpat_idx] = combid
return fitstbl
[docs]
def pypeit_file_keys(self):
"""
Define the list of keys to be output into a standard PypeIt file.
Returns:
:obj:`list`: The list of keywords in the relevant
:class:`~pypeit.metadata.PypeItMetaData` instance to print to the
:ref:`pypeit_file`.
"""
pypeit_keys = super().pypeit_file_keys()
pypeit_keys += ['dithpat', 'dithpos', 'dithoff','frameno']
return pypeit_keys
[docs]
def check_frame_type(self, ftype, fitstbl, exprng=None):
"""
Check for frames of the provided type.
Args:
ftype (:obj:`str`):
Type of frame to check. Must be a valid frame type; see
frame-type :ref:`frame_type_defs`.
fitstbl (`astropy.table.Table`_):
The table with the metadata for one or more frames to check.
exprng (:obj:`list`, optional):
Range in the allowed exposure time for a frame of type
``ftype``. See
:func:`pypeit.core.framematch.check_frame_exptime`.
Returns:
`numpy.ndarray`_: Boolean array with the flags selecting the
exposures in ``fitstbl`` that are ``ftype`` type frames.
"""
good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng)
if ftype in ['pinhole', 'bias', 'dark']:
# No pinhole or bias frames
return np.zeros(len(fitstbl), dtype=bool)
if ftype == 'standard':
return good_exp & ((fitstbl['idname'] == 'object') | (fitstbl['idname'] == 'Object') |
(fitstbl['idname'] == 'standard') | (fitstbl['idname'] == 'telluric')) \
& (fitstbl['target'] != 'DOME PHLAT')
if ftype == 'lampoffflats':
return good_exp & ((fitstbl['idname'] == 'dark') | (fitstbl['idname'] == 'Dark'))
if ftype in ['pixelflat', 'trace']:
return (fitstbl['idname'] == 'domeflat') | (fitstbl['idname'] == 'DomeFlat')
if ftype in 'science':
return good_exp & ((fitstbl['idname'] == 'object') | (fitstbl['idname'] == 'Object')) \
& (fitstbl['target'] != 'DOME PHLAT')
if ftype in ['arc', 'tilt']:
return good_exp & ((fitstbl['idname'] == 'object') | (fitstbl['idname'] == 'Object')) \
& (fitstbl['target'] != 'DOME PHLAT')
return np.zeros(len(fitstbl), dtype=bool)
[docs]
def bpm(self, filename, det, shape=None, msbias=None):
"""
Generate a default bad-pixel mask.
Even though they are both optional, either the precise shape for
the image (``shape``) or an example file that can be read to get
the shape (``filename`` using :func:`get_image_shape`) *must* be
provided.
Args:
filename (:obj:`str` or None):
An example file to use to get the image shape.
det (:obj:`int`):
1-indexed detector number to use when getting the image
shape from the example file.
shape (tuple, optional):
Processed image shape
Required if filename is None
Ignored if filename is not None
msbias (`numpy.ndarray`_, optional):
Processed bias frame used to identify bad pixels.
Returns:
`numpy.ndarray`_: An integer array with a masked value set
to 1 and an unmasked value set to 0. All values are set to
0.
"""
msgs.info("Custom bad pixel mask for NIRES")
# Call the base-class method to generate the empty bpm
bpm_img = super().bpm(filename, det, shape=shape, msbias=msbias)
if det == 1:
bpm_img[:, :20] = 1.
bpm_img[:, 1000:] = 1.
return bpm_img
@property
def norders(self):
"""
Number of orders for this spectograph. Should only defined for
echelle spectrographs, and it is undefined for the base class.
"""
return 5
@property
def order_spat_pos(self):
"""
Return the expected spatial position of each echelle order.
"""
return np.array([0.22773035, 0.40613574, 0.56009658, 0.70260714, 0.86335914])
@property
def orders(self):
"""
Return the order number for each echelle order.
"""
return np.arange(7, 2, -1, dtype=int)
@property
def spec_min_max(self):
"""
Return the minimum and maximum spectral pixel expected for the
spectral range of each order.
"""
spec_max = np.asarray([np.inf]*self.norders)
spec_min = np.asarray([1024, -np.inf, -np.inf, -np.inf, -np.inf])
return np.vstack((spec_min, spec_max))
[docs]
def order_platescale(self, order_vec, binning=None):
"""
Return the platescale for each echelle order.
Note that NIRES has no binning.
Args:
order_vec (`numpy.ndarray`_):
The vector providing the order numbers.
binning (:obj:`str`, optional):
The string defining the spectral and spatial binning. **This
is always ignored.**
Returns:
`numpy.ndarray`_: An array with the platescale for each order
provided by ``order``.
"""
return np.full(order_vec.size, 0.15)