Source code for pypeit.spectrographs.keck_kcwi

"""
Implements KCWI-specific functions.

.. include common links, assuming primary doc root is up one directory
.. include:: ../include/links.rst
"""

from IPython import embed

import numpy as np

from astropy import wcs, units
from astropy.io import fits
from astropy.time import Time
from astropy.coordinates import EarthLocation
from scipy.optimize import curve_fit

from pypeit import msgs
from pypeit import telescopes
from pypeit import utils
from pypeit import io
from pypeit.core import parse
from pypeit.core import procimg
from pypeit.core import framematch
from pypeit.spectrographs import spectrograph
from pypeit.images import detector_container


[docs] class KeckKCWIKCRMSpectrograph(spectrograph.Spectrograph): """ Parent to handle Keck/KCWI+KCRM specific code .. todo:: * Need to apply spectral flexure and heliocentric correction to waveimg -- done? * Copy fast_histogram code into PypeIt? * Re-write flexure code with datamodel + implement spectral flexure QA in find_objects.py * When making the datacube, add an option to apply a spectral flexure correction from a different frame? * Write some detailed docs about the corrections that can be used when making a datacube * Consider introducing a new method (par['flexure']['spec_method']) for IFU flexure corrections (see find-objects.py) """ ndet = 1 telescope = telescopes.KeckTelescopePar() pypeline = 'SlicerIFU' supported = True def __init__(self): super().__init__() # TODO :: Might need to change the tolerance of disperser angle in # pypeit setup (two BH2 nights where sufficiently different that this # was important). # TODO :: Might consider changing TelescopePar to use the astropy # EarthLocation. KBW: Fine with me! self.location = EarthLocation.of_site('Keck Observatory')
[docs] def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the PypeIt-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=0, card=None, compound=True) self.meta['dec'] = dict(ext=0, card=None, compound=True) self.meta['target'] = dict(ext=0, card='TARGNAME') self.meta['decker'] = dict(ext=0, card='IFUNAM') self.meta['binning'] = dict(card=None, compound=True) self.meta['mjd'] = dict(ext=0, card='MJD') self.meta['exptime'] = dict(card=None, compound=True) self.meta['airmass'] = dict(ext=0, card='AIRMASS') self.meta['posang'] = dict(card=None, compound=True) self.meta['ra_off'] = dict(ext=0, card='RAOFF') self.meta['dec_off'] = dict(ext=0, card='DECOFF') # Extras for config and frametyping self.meta['hatch'] = dict(ext=0, card='HATPOS') # self.meta['idname'] = dict(ext=0, card='CALXPOS') self.meta['idname'] = dict(ext=0, card='IMTYPE') self.meta['calpos'] = dict(ext=0, card='CALMNAM') self.meta['slitwid'] = dict(card=None, compound=True) # Get atmospheric conditions (note, these are the conditions at the end of the exposure) self.meta['obstime'] = dict(card=None, compound=True, required=False) self.meta['pressure'] = dict(card=None, compound=True, required=False) self.meta['temperature'] = dict(card=None, compound=True, required=False) self.meta['humidity'] = dict(card=None, compound=True, required=False) self.meta['parangle'] = dict(card=None, compound=True, required=False) self.meta['instrument'] = dict(ext=0, card='INSTRUME') # Lamps lamp_names = ['LMP0', 'LMP1', 'LMP2', 'LMP3'] # FeAr, ThAr, Aux, Continuum for kk, lamp_name in enumerate(lamp_names): self.meta['lampstat{:02d}'.format(kk + 1)] = dict(ext=0, card=lamp_name + 'STAT') for kk, lamp_name in enumerate(lamp_names): if lamp_name == 'LMP3': # There is no shutter on LMP3 self.meta['lampshst{:02d}'.format(kk + 1)] = dict(ext=0, card=None, default=1) continue self.meta['lampshst{:02d}'.format(kk + 1)] = dict(ext=0, card=lamp_name + 'SHST') # Add in the dome lamp self.meta['lampstat{:02d}'.format(len(lamp_names) + 1)] = dict(ext=0, card='FLSPECTR') self.meta['lampshst{:02d}'.format(len(lamp_names) + 1)] = dict(ext=0, card=None, default=1)
[docs] def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. Args: scifile (:obj:`str`): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`~pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set adjusted for configuration specific parameter values. """ par = super().config_specific_par(scifile, inp_par=inp_par) headarr = self.get_headarr(scifile) # Templates par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['lamps'] = ['FeI', 'ArI', 'ArII'] if self.get_meta_value(headarr, 'dispname') == 'BH2': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcwi_BH2.fits' elif self.get_meta_value(headarr, 'dispname') == 'BM': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcwi_BM.fits' elif self.get_meta_value(headarr, 'dispname') == 'BL': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcwi_BL.fits' elif self.get_meta_value(headarr, 'dispname') == 'RL': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcrm_RL.fits' elif self.get_meta_value(headarr, 'dispname') == 'RM1': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcrm_RM1.fits' elif self.get_meta_value(headarr, 'dispname') == 'RM2': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcrm_RM2.fits' elif self.get_meta_value(headarr, 'dispname') == 'RH3': par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_kcrm_RH3.fits' else: msgs.warn("Full template solution is unavailable") msgs.info("Adopting holy-grail algorithm - Check the wavelength solution!") par['calibrations']['wavelengths']['method'] = 'holy-grail' # FWHM # binning = parse.parse_binning(self.get_meta_value(headarr, 'binning')) # par['calibrations']['wavelengths']['fwhm'] = 6.0 / binning[1] # Return return par
[docs] def configuration_keys(self): """ Return the metadata keys that define a unique instrument configuration. This list is used by :class:`~pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: :obj:`list`: List of keywords of data pulled from file headers and used to constuct the :class:`~pypeit.metadata.PypeItMetaData` object. """ return ['dispname', 'decker', 'binning', 'cenwave']
[docs] def compound_meta(self, headarr, meta_key): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ if meta_key == 'binning': binspatial, binspec = parse.parse_binning(headarr[0]['BINNING']) binning = parse.binning2string(binspec, binspatial) return binning elif meta_key == 'exptime': try: return headarr[0]['ELAPTIME'] except KeyError: return headarr[0]['TELAPSE'] elif meta_key == 'slitwid': # Get the slice scale slicescale = 0.00037718 # Degrees per 'large slicer' slice ifunum = headarr[0]['IFUNUM'] if ifunum == 2: slicescale /= 2.0 elif ifunum == 3: slicescale /= 4.0 return slicescale elif meta_key == 'ra' or meta_key == 'dec': try: if self.is_nasmask(headarr[0]): hdrstr = 'RABASE' if meta_key == 'ra' else 'DECBASE' else: hdrstr = 'RA' if meta_key == 'ra' else 'DEC' except KeyError: try: hdrstr = 'TARGRA' if meta_key == 'ra' else 'TARGDEC' except KeyError: msgs.error(f'Cannot determine the {meta_key} from the header') return headarr[0][hdrstr] elif meta_key == 'pressure': try: return headarr[0]['WXPRESS'] # Must be in astropy.units.mbar except KeyError: msgs.warn("Pressure is not in header") msgs.info("The default pressure will be assumed: 611 mbar") return 611.0 elif meta_key == 'temperature': try: return headarr[0]['WXOUTTMP'] # Must be in astropy.units.deg_C except KeyError: msgs.warn("Temperature is not in header") msgs.info("The default temperature will be assumed: 1.5 deg C") return 1.5 # van Kooten & Izett, arXiv:2208.11794 elif meta_key == 'humidity': try: # Humidity expressed as a percentage, not a fraction return headarr[0]['WXOUTHUM'] except KeyError: msgs.warn("Humidity is not in header") msgs.info("The default relative humidity will be assumed: 20 %") return 20.0 # van Kooten & Izett, arXiv:2208.11794 elif meta_key == 'parangle': try: # Parallactic angle expressed in radians return headarr[0]['PARANG'] * np.pi / 180.0 except KeyError: msgs.error("Parallactic angle is not in header") elif meta_key == 'obstime': return Time(headarr[0]['DATE-END']) elif meta_key == 'posang': hdr = headarr[0] # Get rotator position if 'ROTPOSN' in hdr: rpos = hdr['ROTPOSN'] else: rpos = 0. if 'ROTREFAN' in hdr: rref = hdr['ROTREFAN'] else: rref = 0. # Get the offset and PA skypa = rpos + rref # IFU position angle (degrees) return skypa else: msgs.error("Not ready for this compound meta")
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() # Set the default exposure time ranges for the frame typing par['calibrations']['biasframe']['exprng'] = [None, 0.001] par['calibrations']['darkframe']['exprng'] = [0.01, None] # Set the number of alignments in the align frames par['calibrations']['alignment']['locations'] = [0.1, 0.3, 0.5, 0.7, 0.9] # TODO:: Check this - is this accurate enough? # LACosmics parameters par['scienceframe']['process']['sigclip'] = 4.0 par['scienceframe']['process']['objlim'] = 1.5 # Illumination corrections par['scienceframe']['process']['use_illumflat'] = True # illumflat is applied when building the relative scale image in reduce.py, so should be applied to scienceframe too. par['scienceframe']['process']['use_specillum'] = True # apply relative spectral illumination par['scienceframe']['process']['spat_flexure_correct'] = False # don't correct for spatial flexure - varying spatial illumination profile could throw this correction off. Also, there's no way to do astrometric correction if we can't correct for spatial flexure of the contbars frames par['scienceframe']['process']['use_biasimage'] = True # Need to use bias frames for KCWI, because the bias level varies monotonically with spatial and spectral direction par['scienceframe']['process']['use_darkimage'] = False # Don't do 1D extraction for 3D data - it's meaningless because the DAR correction must be performed on the 3D data. par['reduce']['extraction']['skip_extraction'] = True # Because extraction occurs before the DAR correction, don't extract # Make sure that this is reduced as a slit (as opposed to fiber) spectrograph par['reduce']['cube']['slit_spec'] = True par['reduce']['cube']['combine'] = False # Make separate spec3d files from the input spec2d files # Sky subtraction parameters par['reduce']['skysub']['no_poly'] = False par['reduce']['skysub']['bspline_spacing'] = 0.6 par['reduce']['skysub']['joint_fit'] = False # Don't correct flexure by default, but you should use slitcen, # because this is a slit-based IFU where no objects are extracted. par['flexure']['spec_method'] = 'skip' par['flexure']['spec_maxshift'] = 3 # Just in case someone switches on spectral flexure, this needs to be minimal # Flux calibration parameters par['sensfunc']['UVIS']['extinct_correct'] = False # This must be False - the extinction correction is performed when making the datacube # If telluric is triggered par['sensfunc']['IR']['telgridfile'] = 'TellPCA_3000_26000_R15000.fits' return par
[docs] def pypeit_file_keys(self): """ Define the list of keys to be output into a standard PypeIt file. Returns: :obj:`list`: The list of keywords in the relevant :class:`~pypeit.metadata.PypeItMetaData` instance to print to the :ref:`pypeit_file`. """ return super().pypeit_file_keys() + ['posang', 'ra_off', 'dec_off', 'idname', 'calpos']
[docs] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype == 'science': return good_exp & (fitstbl['idname'] == 'OBJECT') & (fitstbl['calpos'] == 'Sky') \ & self.lamps(fitstbl, 'off') & (fitstbl['hatch'] == 'Open') if ftype == 'bias': return good_exp & (fitstbl['idname'] == 'BIAS') if ftype in ['pixelflat', 'scattlight']: # Scattered light needs lots of counts - so set it to the pixelflat by default # Use internal lamp return good_exp & (fitstbl['idname'] == 'FLATLAMP') & (fitstbl['calpos'] == 'Mirror') \ & self.lamps(fitstbl, 'cont_noarc') if ftype in ['illumflat', 'trace']: # Use dome flats return good_exp & (fitstbl['idname'] == 'DOMEFLAT') & (fitstbl['calpos'] == 'Sky') \ & self.lamps(fitstbl, 'dome_noarc') & (fitstbl['hatch'] == 'Open') if ftype == 'dark': # Dark frames return good_exp & (fitstbl['idname'] == 'DARK') & self.lamps(fitstbl, 'off') \ & (fitstbl['hatch'] == 'Closed') if ftype == 'align': # Alignment frames # NOTE: Different from previous versions, this now only warns the user if everyth is_align = good_exp & (fitstbl['idname'] == 'CONTBARS') \ & (fitstbl['calpos'] == 'Mirror') & self.lamps(fitstbl, 'cont') if np.any(is_align & np.logical_not(self.lamps(fitstbl, 'cont_noarc'))): msgs.warn('Alignment frames have both the continuum and arc lamps on (although ' 'arc-lamp shutter might be closed)!') return is_align if ftype == 'arc': # PypeIt is only setup to wavelength calibrate using the FeAr lamp. return good_exp & (fitstbl['idname'] == 'ARCLAMP') & (fitstbl['calpos'] == 'Mirror') \ & self.lamps(fitstbl, 'arcs') if ftype == 'tilt': # Check to see if ThAr frames are available. If so, use them. Otherwise, use the FeAr lamp. tmp = good_exp & (fitstbl['idname'] == 'ARCLAMP') & (fitstbl['calpos'] == 'Mirror') \ & self.lamps(fitstbl, 'tilts') if np.any(tmp): return tmp # No ThAr frames, so use the FeAr lamp return good_exp & (fitstbl['idname'] == 'ARCLAMP') & (fitstbl['calpos'] == 'Mirror') \ & self.lamps(fitstbl, 'arcs') if ftype == 'pinhole': # Don't type pinhole frames return np.zeros(len(fitstbl), dtype=bool) msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool)
[docs] def lamps(self, fitstbl, status): """ Check the lamp status. Args: fitstbl (`astropy.table.Table`_): The table with the fits header meta data. status (:obj:`str`): The status to check. Can be ``'off'``, ``'arcs'``, or ``'dome'``. Returns: `numpy.ndarray`_: A boolean array selecting fits files that meet the selected lamp status. Raises: ValueError: Raised if the status is not one of the valid options. """ if status == 'off': # Check if all are off lampstat = np.array([np.isin(fitstbl[k], ['0', 'None', 'off']) for k in fitstbl.keys() if 'lampstat' in k]) return np.all(lampstat, axis=0) # Lamp has to be off if status in ['arcs', 'tilts']: # Check if any arc/tilt lamps are on if status == 'arcs': # Only FeAr is used for wavelength calibration arc_lamp_stat = ['lampstat{0:02d}'.format(1)] arc_lamp_shst = ['lampshst{0:02d}'.format(1)] else: # Only ThAr is used to calculate the tilt arc_lamp_stat = ['lampstat{0:02d}'.format(2)] arc_lamp_shst = ['lampshst{0:02d}'.format(2)] lamp_stat = np.array([fitstbl[k] == '1' for k in fitstbl.keys() if k in arc_lamp_stat]) lamp_shst = np.array([fitstbl[k] == '1' for k in fitstbl.keys() if k in arc_lamp_shst]) # Make sure the continuum frames are off dome_lamps = ['lampstat{0:02d}'.format(i) for i in range(4, 5)] dome_lamp_stat = np.array([fitstbl[k] == '0' for k in fitstbl.keys() if k in dome_lamps]) return np.any(lamp_stat & lamp_shst & dome_lamp_stat, axis=0) # i.e. lamp on and shutter open if status in ['cont_noarc', 'cont']: # Check if any internal lamps are on (Continuum) - Ignore lampstat03 (Aux) - not sure what this is used for cont_lamp_stat = ['lampstat{0:02d}'.format(4)] lamp_stat = np.array([fitstbl[k] == '1' for k in fitstbl.keys() if k in cont_lamp_stat]) if status == 'cont_noarc': # Make sure arcs are off - it seems even with the shutter closed, the arcs arc_lamps = ['lampstat{0:02d}'.format(i) for i in range(1, 3)] arc_lamp_stat = np.array([fitstbl[k] == '0' for k in fitstbl.keys() if k in arc_lamps]) lamp_stat = lamp_stat & arc_lamp_stat return np.any(lamp_stat, axis=0) # i.e. lamp on if status in ['dome_noarc', 'dome']: # Check if any dome lamps are on (Continuum) - Ignore lampstat03 (Aux) - not sure what this is used for dome_lamp_stat = ['lampstat{0:02d}'.format(5)] lamp_stat = np.array([fitstbl[k] == 'on' for k in fitstbl.keys() if k in dome_lamp_stat]) if status == 'dome_noarc': # Make sure arcs are off - it seems even with the shutter closed, the arcs arc_lamps = ['lampstat{0:02d}'.format(i) for i in range(1, 3)] arc_lamp_stat = np.array([fitstbl[k] == '0' for k in fitstbl.keys() if k in arc_lamps]) lamp_stat = lamp_stat & arc_lamp_stat return np.any(lamp_stat, axis=0) # i.e. lamp on raise ValueError('No implementation for status = {0}'.format(status))
[docs] def get_lamps_status(self, headarr): """ Return a string containing the information on the lamp status. Args: headarr (:obj:`list`): A list of 1 or more `astropy.io.fits.Header`_ objects. Returns: :obj:`str`: A string that uniquely represents the lamp status. """ # Loop through all lamps and collect their status kk = 1 lampstat = [] while True: lampkey1 = 'lampstat{:02d}'.format(kk) if lampkey1 not in self.meta.keys(): break ext1, card1 = self.meta[lampkey1]['ext'], self.meta[lampkey1]['card'] lampkey2 = 'lampshst{:02d}'.format(kk) if self.meta[lampkey2]['card'] is None: lampstat += [str(headarr[ext1][card1])] else: ext2, card2 = self.meta[lampkey2]['ext'], self.meta[lampkey2]['card'] lampstat += ["{0:s}-{1:s}".format(str(headarr[ext1][card1]), str(headarr[ext2][card2]))] kk += 1 return "_".join(lampstat)
[docs] def calc_pattern_freq(self, frame, rawdatasec_img, oscansec_img, hdu): """ Calculate the pattern frequency using the overscan region that covers the overscan and data sections. Using a larger range allows the frequency to be pinned down with high accuracy. NOTE: The amplifiers are arranged as follows: | (0,ny) --------- (nx,ny) | | 3 | 4 | | --------- | | 1 | 2 | | (0,0) --------- (nx, 0) .. todo:: PATTERN FREQUENCY ALGORITHM HAS NOT BEEN TESTED WHEN BINNING != 1x1 Parameters ---------- frame : `numpy.ndarray`_ Raw data frame to be used to estimate the pattern frequency. rawdatasec_img : `numpy.ndarray`_ Array the same shape as ``frame``, used as a mask to identify the data pixels (0 is no data, non-zero values indicate the amplifier number). oscansec_img : `numpy.ndarray`_ Array the same shape as ``frame``, used as a mask to identify the overscan pixels (0 is no data, non-zero values indicate the amplifier number). hdu : `astropy.io.fits.HDUList`_ Opened fits file. Returns ------- patt_freqs : :obj:`list` List of pattern frequencies. """ msgs.info("Calculating pattern noise frequency") # Make a copy of te original frame raw_img = frame.copy() # Get a unique list of the amplifiers unq_amps = np.sort(np.unique(oscansec_img[np.where(oscansec_img >= 1)])) num_amps = unq_amps.size # Loop through amplifiers and calculate the frequency patt_freqs = [] for amp in unq_amps: # Grab the pixels where the amplifier has data pixs = np.where((rawdatasec_img == amp) | (oscansec_img == amp)) rmin, rmax = np.min(pixs[1]), np.max(pixs[1]) # Deal with the different locations of the overscan regions in 2- and 4- amp mode if num_amps == 2: cmin = 1+np.max(pixs[0]) frame = raw_img[cmin:, rmin:rmax].astype(float) elif num_amps == 4: if amp in [1, 2]: pixalt = np.where((rawdatasec_img == amp+2) | (oscansec_img == amp+2)) cmin = 1+np.max(pixs[0]) cmax = (np.min(pixalt[0]) + cmin)//2 # Average of the bottom of the top amp, and top of the bottom amp else: pixalt = np.where((rawdatasec_img == amp-2) | (oscansec_img == amp-2)) cmax = 1+np.min(pixs[0]) cmin = (np.max(pixalt[0]) + cmax)//2 frame = raw_img[cmin:cmax, rmin:rmax].astype(float) # Calculate the pattern frequency freq = procimg.pattern_frequency(frame) patt_freqs.append(freq) msgs.info("Pattern frequency of amplifier {0:d}/{1:d} = {2:f}".format(amp, num_amps, freq)) # Return the list of pattern frequencies return patt_freqs
[docs] def get_wcs(self, hdr, slits, platescale, wave0, dwv, spatial_scale=None): """ Construct/Read a World-Coordinate System for a frame. Args: hdr (`astropy.io.fits.Header`_): The header of the raw frame. The information in this header will be extracted and returned as a WCS. slits (:class:`~pypeit.slittrace.SlitTraceSet`): Slit traces. platescale (:obj:`float`): The platescale of an unbinned pixel in arcsec/pixel (e.g. detector.platescale). See also 'spatial_scale' wave0 (:obj:`float`): The wavelength zeropoint. dwv (:obj:`float`): Change in wavelength per spectral pixel. spatial_scale (:obj:`float`, None, optional): The spatial scale (units=arcsec/pixel) of the WCS to be used. This variable is fixed, and is independent of the binning. If spatial_scale is set, it will be used for the spatial size of the WCS and the platescale will be ignored. If None, then the platescale will be used. Returns: `astropy.wcs.WCS`_: The world-coordinate system. """ msgs.info(f"Generating {self.camera} WCS") # Get the x and y binning factors, and the typical slit length binspec, binspat = parse.parse_binning(self.get_meta_value([hdr], 'binning')) # Get the pixel and slice scales pxscl = platescale * binspat / 3600.0 # 3600 is to convert arcsec to degrees slscl = self.get_meta_value([hdr], 'slitwid') if spatial_scale is not None: if pxscl > spatial_scale / 3600.0: msgs.warn("Spatial scale requested ({0:f}'') is less than the pixel scale ({1:f}'')".format(spatial_scale, pxscl*3600.0)) # Update the pixel scale pxscl = spatial_scale / 3600.0 # 3600 is to convert arcsec to degrees # Get the typical slit length (this changes by ~0.3% over all slits, so a constant is fine for now) slitlength = int(np.round(np.median(slits.get_slitlengths(initial=True, median=True)))) # Get RA/DEC ra = self.compound_meta([hdr], 'ra') dec = self.compound_meta([hdr], 'dec') skypa = self.compound_meta([hdr], 'posang') rotoff = 0.0 # IFU-SKYPA offset (degrees) crota = np.radians(-(skypa + rotoff)) # Calculate the fits coordinates cdelt1 = -slscl cdelt2 = pxscl # Calculate the CD Matrix cd11 = cdelt1 * np.cos(crota) # RA degrees per column cd12 = abs(cdelt2) * np.sign(cdelt1) * np.sin(crota) # RA degrees per row cd21 = -abs(cdelt1) * np.sign(cdelt2) * np.sin(crota) # DEC degress per column cd22 = cdelt2 * np.cos(crota) # DEC degrees per row # Get reference pixels (set these to the middle of the FOV) crpix1 = 24/2 # i.e. 24 slices/2 crpix2 = slitlength / 2. crpix3 = 1. # Get the offset porg = hdr['PONAME'] ifunum = hdr['IFUNUM'] if 'IFU' in porg: # if ifunum == 1: # Large slicer # off1 = 1.0 # off2 = 4.0 # elif ifunum == 2: # Medium slicer # off1 = 1.0 # off2 = 5.0 # elif ifunum == 3: # Small slicer # off1 = 0.05 # off2 = 5.6 # else: # msgs.warn("Unknown IFU number: {0:d}".format(ifunum)) off1 = 0. off2 = 0. off1 /= binspec off2 /= binspat crpix1 += off1 crpix2 += off2 # Create a new WCS object. w = wcs.WCS(naxis=3) w.wcs.equinox = hdr['EQUINOX'] w.wcs.name = self.camera w.wcs.radesys = 'FK5' w.wcs.lonpole = 180.0 # Native longitude of the Celestial pole w.wcs.latpole = 0.0 # Native latitude of the Celestial pole # Insert the coordinate frame w.wcs.cname = ['RA', 'DEC', 'Wavelength'] w.wcs.cunit = [units.degree, units.degree, units.Angstrom] w.wcs.ctype = ["RA---TAN", "DEC--TAN", "WAVE"] # Note, WAVE is vacuum wavelength w.wcs.crval = [ra, dec, wave0] # RA, DEC, and wavelength zeropoints w.wcs.crpix = [crpix1, crpix2, crpix3] # RA, DEC, and wavelength reference pixels w.wcs.cd = np.array([[cd11, cd12, 0.0], [cd21, cd22, 0.0], [0.0, 0.0, dwv]]) return w
[docs] def get_datacube_bins(self, slitlength, minmax, num_wave): r""" Calculate the bin edges to be used when making a datacube. Args: slitlength (:obj:`int`): Length of the slit in pixels minmax (`numpy.ndarray`_): An array with the minimum and maximum pixel locations on each slit relative to the reference location (usually the centre of the slit). Shape must be :math:`(N_{\rm slits},2)`, and is typically the array returned by :func:`~pypeit.slittrace.SlitTraceSet.get_radec_image`. num_wave (:obj:`int`): Number of wavelength steps. Given by:: int(round((wavemax-wavemin)/delta_wave)) Args: :obj:`tuple`: Three 1D `numpy.ndarray`_ providing the bins to use when constructing a histogram of the spec2d files. The elements are :math:`(x,y,\lambda)`. """ xbins = np.arange(1 + 24) - 24/2 - 0.5 ybins = np.linspace(np.min(minmax[:, 0]), np.max(minmax[:, 1]), 1+slitlength) - 0.5 spec_bins = np.arange(1+num_wave) - 0.5 return xbins, ybins, spec_bins
[docs] def bpm(self, filename, det, shape=None, msbias=None): """ Generate a default bad-pixel mask for KCWI and KCRM. Even though they are both optional, either the precise shape for the image (``shape``) or an example file that can be read to get the shape (``filename`` using :func:`get_image_shape`) *must* be provided. Args: filename (:obj:`str` or None): An example file to use to get the image shape. det (:obj:`int`): 1-indexed detector number to use when getting the image shape from the example file. shape (tuple, optional): Processed image shape Required if filename is None Ignored if filename is not None msbias (`numpy.ndarray`_, optional): Processed bias frame used to identify bad pixels. **This is ignored for KCWI.** Returns: `numpy.ndarray`_: An integer array with a masked value set to 1 and an unmasked value set to 0. All values are set to 0. """ # Call the base-class method to generate the empty bpm; msbias is always set to None. bpm_img = super().bpm(filename, det, shape=shape, msbias=None) # Extract some header info head0 = fits.getheader(filename, ext=0) ampmode = head0['AMPMODE'] binning = head0['BINNING'] # Construct a list of the bad columns # KCWI --> AMPMODE = 'ALL', 'TBO', 'TUP' # KCRM --> AMPMODE = 'L2U2', 'L2U2L1U1' bc = None if ampmode == 'ALL': # TODO: There are several bad columns in this mode, but this is typically only used for arcs. # It's the same set of bad columns seen in the TBO and TUP amplifier modes. if binning == '1,1': bc = [[3676, 3676, 2056, 2244]] elif binning == '2,2': bc = [[1838, 1838, 1028, 1121]] elif ampmode == 'TBO': if binning == '1,1': bc = [[2622, 2622, 619, 687], [2739, 2739, 1748, 1860], [3295, 3300, 2556, 2560], [3675, 3676, 2243, 4111]] elif binning == '2,2': bc = [[1311, 1311, 310, 354], [1369, 1369, 876, 947], [1646, 1650, 1278, 1280], [1838, 1838, 1122, 2055]] elif ampmode == 'TUP': if binning == '1,1': # bc = [[2622, 2622, 3492, 3528], bc = [[2622, 2622, 3492, 4111], # Extending this BPM, as sometimes the bad column is larger than this. [3295, 3300, 1550, 1555], [3676, 3676, 1866, 4111]] elif binning == '2,2': # bc = [[1311, 1311, 1745, 1788], bc = [[1311, 1311, 1745, 2055], # Extending this BPM, as sometimes the bad column is larger than this. [1646, 1650, 775, 777], [1838, 1838, 933, 2055]] elif ampmode == 'L2U2': if binning == '1,1': bc = [[649, 651, 0, 613]] # This accounts for the spatflip - not sure if the 649-651 is too broad though... elif binning == '2,2': bc = [[325, 325, 0, 307]] # This accounts for the spatflip elif ampmode == "L2U2L1U1": pass # Currently unchecked... # if binning == '1,1': # bc = [[3460, 3460, 2064, 3520]] # elif binning == '2,2': # bc = [[1838, 1838, 1028, 1121]] # Check if the bad columns haven't been set if bc is None: msgs.warn("KCRM bad pixel mask is not available for ampmode={0:s} binning={1:s}".format(ampmode, binning)) bc = [] # Apply these bad columns to the mask for bb in range(len(bc)): bpm_img[bc[bb][2]:bc[bb][3]+1, bc[bb][0]:bc[bb][1]+1] = 1 return np.flipud(bpm_img)
[docs] class KeckKCWISpectrograph(KeckKCWIKCRMSpectrograph): """ Child to handle Keck/KCWI specific code """ name = 'keck_kcwi' camera = 'KCWI' url = 'https://www2.keck.hawaii.edu/inst/kcwi/' header_name = 'KCWI' comment = 'Supported setups: BL, BM, BH2; see :doc:`keck_kcwi`'
[docs] def get_detector_par(self, det, hdu=None): """ Return metadata for the selected detector. .. warning:: Many of the necessary detector parameters are read from the file header, meaning the ``hdu`` argument is effectively **required** for KCWI. The optional use of ``hdu`` is only viable for automatically generated documentation. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ if hdu is None: binning = '2,2' specflip = None numamps = None gainarr = None ronarr = None # dsecarr = None # msgs.error("A required keyword argument (hdu) was not supplied") else: # Some properties of the image binning = self.compound_meta(self.get_headarr(hdu), "binning") numamps = hdu[0].header['NVIDINP'] specflip = True if hdu[0].header['AMPID1'] == 2 else False gainmul, gainarr = hdu[0].header['GAINMUL'], np.zeros(numamps) ronarr = np.zeros(numamps) # Set this to zero (determine the readout noise from the overscan regions) # dsecarr = np.array(['']*numamps) for ii in range(numamps): # Assign the gain for this amplifier gainarr[ii] = hdu[0].header["GAIN{0:1d}".format(ii + 1)]# * gainmul detector = dict(det = det, binning = binning, dataext = 0, specaxis = 0, specflip = specflip, spatflip = False, platescale = 0.145728, # arcsec/pixel darkcurr = 1.0, # e-/hour/unbinned pixel mincounts = -1e10, saturation = 65535., nonlinear = 0.95, # For lack of a better number! numamplifiers = numamps, gain = gainarr, ronoise = ronarr, # These are never used because the image reader sets these up using the file headers data. # datasec = dsecarr, #.copy(), # <-- This is provided in the header # oscansec = dsecarr, #.copy(), # <-- This is provided in the header ) # Return return detector_container.DetectorContainer(**detector)
[docs] def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the PypeIt-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ super().init_meta() self.meta['dispname'] = dict(ext=0, card='BGRATNAM') self.meta['dispangle'] = dict(ext=0, card='BGRANGLE', rtol=0.01) self.meta['cenwave'] = dict(ext=0, card='BCWAVE', rtol=0.01)
[docs] def raw_header_cards(self): """ Return additional raw header cards to be propagated in downstream output files for configuration identification. The list of raw data FITS keywords should be those used to populate the :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.configuration_keys` or are used in :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.config_specific_par` for a particular spectrograph, if different from the name of the PypeIt metadata keyword. This list is used by :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.subheader_for_spec` to include additional FITS keywords in downstream output files. Returns: :obj:`list`: List of keywords from the raw data files that should be propagated in output files. """ return ['BGRATNAM', 'IFUNAM', 'BGRANGLE']
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() # Subtract the detector pattern from certain frames. # NOTE: The pattern subtraction is time-consuming, meaning we don't # perform it (by default) for the high S/N pixel flat images but we do # for everything else. par['calibrations']['biasframe']['process']['use_pattern'] = True par['calibrations']['darkframe']['process']['use_pattern'] = True par['calibrations']['pixelflatframe']['process']['use_pattern'] = False par['calibrations']['illumflatframe']['process']['use_pattern'] = True par['calibrations']['standardframe']['process']['use_pattern'] = True par['scienceframe']['process']['use_pattern'] = True # Subtract scattered light, but only for the pixel and illum flats, # as well as and science/standard star data. par['calibrations']['scattlight_pad'] = 6 # This is the unbinned number of pixels to pad par['calibrations']['pixelflatframe']['process']['subtract_scattlight'] = True par['calibrations']['illumflatframe']['process']['subtract_scattlight'] = True par['scienceframe']['process']['subtract_scattlight'] = True par['scienceframe']['process']['scattlight']['finecorr_method'] = 'median' par['scienceframe']['process']['scattlight']['finecorr_pad'] = 4 # This is the unbinned number of pixels to pad par['scienceframe']['process']['scattlight']['finecorr_order'] = 2 # par['scienceframe']['process']['scattlight']['finecorr_mask'] = 12 # Mask the middle inter-slit region. It contains a strange scattered light feature that doesn't appear to affect any other inter-slit regions # Correct the illumflat for pixel-to-pixel sensitivity variations par['calibrations']['illumflatframe']['process']['use_pixelflat'] = True # Make sure the overscan is subtracted from the dark par['calibrations']['darkframe']['process']['use_overscan'] = True # Set the slit edge parameters par['calibrations']['slitedges']['fit_order'] = 4 par['calibrations']['slitedges']['pad'] = 2 # Need to pad out the tilts for the astrometric transform when creating a datacube. par['calibrations']['slitedges']['edge_thresh'] = 5 # 5 works well with a range of setups tested by RJC (mostly 1x1 binning) # KCWI has non-uniform spectral resolution across the field-of-view par['calibrations']['wavelengths']['fwhm_spec_order'] = 1 par['calibrations']['wavelengths']['fwhm_spat_order'] = 2 # Alter the method used to combine pixel flats par['calibrations']['pixelflatframe']['process']['combine'] = 'median' par['calibrations']['flatfield']['spec_samp_coarse'] = 20.0 par['calibrations']['flatfield']['spat_samp'] = 1.0 # This should give 1% accuracy in the spatial illumination correction for 2x2 binning, and <0.5% accuracy for 1x1 binning #par['calibrations']['flatfield']['tweak_slits'] = False # Do not tweak the slit edges (we want to use the full slit) par['calibrations']['flatfield']['tweak_slits_thresh'] = 0.0 # Make sure the full slit is used (i.e. when the illumination fraction is > 0.5) par['calibrations']['flatfield']['tweak_slits_maxfrac'] = 0.0 # Make sure the full slit is used (i.e. no padding) par['calibrations']['flatfield']['slit_trim'] = 3 # Trim the slit edges # Relative illumination correction par['calibrations']['flatfield']['slit_illum_relative'] = True # Calculate the relative slit illumination par['calibrations']['flatfield']['slit_illum_ref_idx'] = 14 # The reference index - this should probably be the same for the science frame par['calibrations']['flatfield']['slit_illum_smooth_npix'] = 5 # Sufficiently small value so less structure in relative weights par['calibrations']['flatfield']['fit_2d_det_response'] = True # Include the 2D detector response in the pixelflat. return par
[docs] @staticmethod def is_nasmask(hdr): """ Determine if a frame used nod-and-shuffle. Args: hdr (`astropy.io.fits.Header`_): The header of the raw frame. Returns: :obj:`bool`: True if NAS used. """ return 'Mask' in hdr['BNASNAM']
[docs] def get_rawimage(self, raw_file, det): """ Read a raw KCWI data frame NOTE: The amplifiers are arranged as follows: | (0,ny) --------- (nx,ny) | | 3 | 4 | | --------- | | 1 | 2 | | (0,0) --------- (nx, 0) Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ fil = utils.find_single_file(f'{raw_file}*', required=True) # Read msgs.info(f'Reading KCWI file: {fil}') hdu = io.fits_open(fil) detpar = self.get_detector_par(det if det is not None else 1, hdu=hdu) head0 = hdu[0].header raw_img = hdu[detpar['dataext']].data.astype(float) # Some properties of the image numamps = head0['NVIDINP'] # Exposure time (used by ProcessRawImage) headarr = self.get_headarr(hdu) exptime = self.get_meta_value(headarr, 'exptime') # Always assume normal FITS header formatting one_indexed = True include_last = True for section in ['DSEC', 'BSEC']: # Initialize the image (0 means no amplifier) pix_img = np.zeros(raw_img.shape, dtype=int) for aa, ampid in enumerate(1+np.arange(numamps)): # Get the data section sec = head0[section+"{0:1d}".format(ampid)] # Convert the data section from a string to a slice # TODO :: RJC - I think something has changed here... and the BPM is flipped (or not flipped) for different amp modes. # RJC - Note, KCWI records binned sections, so there's no need to pass binning in as an argument datasec = parse.sec2slice(sec, one_indexed=one_indexed, include_end=include_last, require_dim=2) # Flip the datasec datasec = datasec[::-1] # Assign the amplifier pix_img[datasec] = aa+1 # Finish if section == 'DSEC': rawdatasec_img = pix_img.copy() elif section == 'BSEC': oscansec_img = pix_img.copy() # Return return detpar, raw_img, hdu, exptime, rawdatasec_img, oscansec_img
[docs] def scattered_light_archive(self, binning, dispname): """ Archival model parameters for the scattered light. These are based on best fits to currently available data. For KCWI, the main contributor to the scattered light is referred to as the "narcissistic ghost" by Morrissey et al. (2018), ApJ, 864, 93. This scattered light is thought to be a reflection off the detector that travels back through the optical system. Some fraction gets sent back out to space, while the remained comes back through the optical system and a fuzzy version of this is re-imaged onto the detector. The current KCWI scattered light model is designed to account for these effects. Parameters ---------- binning : :obj:`str`, optional Comma-separated binning along the spectral and spatial directions; e.g., ``2,1`` dispname : :obj:`str`, optional Name of the disperser Returns ------- x0 : `numpy.ndarray`_ A 1D array containing the best-fitting model parameters bounds : :obj:`tuple` A tuple of two elements, containing two `numpy.ndarray`_ of the same length as x0. These two arrays contain the lower (first element of the tuple) and upper (second element of the tuple) bounds to consider on the scattered light model parameters. """ # Grab the binning for convenience specbin, spatbin = parse.parse_binning(binning) # Get some starting parameters (these were determined by fitting spectra, # and should be close to the final fitted values to reduce computational time) # Note :: These values need to be originally based on data that uses 1x1 binning, # and are now scaled here according to the binning of the current data to be analysed. if dispname == 'BH2': # This solution had Cost: 1.0393e+08 and was based on a 1x1 dataset using pixelflat as the scattlight frame, and assuming pad=6 x0 = np.array([67.15200530737414 / specbin, 157.1074288810557 / spatbin, # Gaussian kernel widths 179.2999412601927 / specbin, 139.76705167365654 / spatbin, # Lorentzian kernel widths 4.562250837489429 / specbin, 5.054084609129999 / spatbin, # pixel offsets 0.9551212825380554, 0.9982713953567679, # Zoom factor (spec, spat) 24.967114476694526, # constant flux offset 0.09655699215523728, # kernel angle 0.5524841628998713, # Relative kernel scale (>1 means the kernel is more Gaussian, >0 but <1 makes the profile more lorentzian) 0.0035617904638365447, -0.004572414005692468, # Polynomial terms (coefficients of "spat" and "spat*spec") 0.10339051745377138, -0.011285432228341519, -0.007042406129643602]) # Polynomial terms (coefficients of spec**index) elif dispname == 'BM': # This solution had Cost: 4.8690e+07 and was based on a 1x1 dataset using pixelflat as the scattlight frame, and assuming pad=6 x0 = np.array([57.52686698670778 / specbin, 44.22645738529251 / spatbin, # Gaussian kernel widths 177.49996713255973 / specbin, 157.85206762558929 / spatbin, # Lorentzian kernel widths 1.5547056520696672 / specbin, 5.1916115942048915 / spatbin, # pixel offsets 0.9969235709861033, 0.9988876925628252, # Zoom factor (spec, spat) 5.117391743273053, # constant flux offset 0.1073126011932528, # kernel angle 0.37915677855016305, # Relative kernel scale (>1 means the kernel is more Gaussian, >0 but <1 makes the profile more lorentzian) -0.0023288032996881753, 0.002167786497577728, # Polynomial terms (coefficients of "spat" and "spat*spec") 0.08981952806519802, -0.07364263035160445, 0.04799106653657783]) # Polynomial terms (coefficients of spec**index) elif dispname == 'BL': # This solution had Cost: 7.0172e+06 and was based on a 2x2 dataset using pixelflat as the scattlight frame, and assuming pad=10 x0 = np.array([54.843502304988725 / specbin, 71.36603219575882 / spatbin, # Gaussian kernel widths 166.5990017834228 / specbin, 164.45188033168876 / spatbin, # Lorentzian kernel widths -5.759623374637964 / specbin, 5.01392929142184 / spatbin, # pixel offsets 1.0017829374409521, 1.000312421855213, # Zoom factor (spec, spat) 4.429458755393496, # constant flux offset -0.11853206385621386, # kernel angle 0.4961668294341919, # Relative kernel scale (>1 means the kernel is more Gaussian, >0 but <1 makes the profile more lorentzian) -0.004790394657721825, 0.0032481886185675036, # Polynomial terms (coefficients of "spat" and "spat*spec") 0.07823077510724392, -0.0644638013233617, 0.01819438897935518]) # Polynomial terms (coefficients of spec**index) else: msgs.warn(f"Initial scattered light model parameters have not been setup for grating {dispname}") x0 = np.array([54.843502304988725 / specbin, 71.36603219575882 / spatbin, # Gaussian kernel widths 166.5990017834228 / specbin, 164.45188033168876 / spatbin, # Lorentzian kernel widths -5.759623374637964 / specbin, 5.01392929142184 / spatbin, # pixel offsets 1.0017829374409521, 1.000312421855213, # Zoom factor (spec, spat) 4.429458755393496, # constant flux offset -0.11853206385621386, # kernel angle 0.4961668294341919, # Relative kernel scale (>1 means the kernel is more Gaussian, >0 but <1 makes the profile more lorentzian) -0.004790394657721825, 0.0032481886185675036, # Polynomial terms (coefficients of "spat" and "spat*spec") 0.07823077510724392, -0.0644638013233617, 0.01819438897935518]) # Polynomial terms (coefficients of spec**index) # Now set the bounds of the fitted parameters bounds = ([# Lower bounds: 1, 1, # Gaussian kernel widths 1, 1, # Lorentzian kernel widths -10 / specbin, -10 / spatbin, # pixel offsets 0, 0, # Zoom factor (spec, spat) -1000, -(10 / 180) * np.pi, 0.0, # constant flux offset, kernel angle, relative kernel scale -10, -10, -10, -10, -10], # Polynomial terms # Upper bounds [600 / specbin, 600 / spatbin, # Gaussian kernel widths 600 / specbin, 600 / spatbin, # Lorentzian kernel widths 10 / specbin, 10 / spatbin, # pixel offsets 2, 2, # Zoom factor (spec, spat) 1000.0, +(10 / 180) * np.pi, 1000.0, # constant flux offset, kernel angle, relative kernel scale 10, 10, 10, 10, 10]) # Polynomial terms # Return the best-fitting archival parameters and the bounds return x0, bounds
[docs] def fit_2d_det_response(self, det_resp, gpmask): r""" Perform a 2D model fit to the KCWI detector response. A few different setups were inspected (BH2 & BM with different grating angles), and a very similar response pattern was found for all setups, indicating that this structure is something to do with the detector. The starting parameters and functional form are assumed to be sufficient for all setups. Args: det_resp (`numpy.ndarray`_): An image of the flatfield structure. gpmask (`numpy.ndarray`_): Good pixel mask (True=good), the same shape as ff_struct. Returns: `numpy.ndarray`_: A model fit to the flatfield structure. """ msgs.info("Performing a 2D fit to the detector response") # Define a 2D sine function, which is a good description of KCWI data def sinfunc2d(x, amp, scl, quad, phase, wavelength, angle): """ 2D Sine function """ xx, yy = x angle *= np.pi / 180.0 return 1 + (amp + xx*scl + xx*xx*quad) * np.sin( 2 * np.pi * (xx * np.cos(angle) + yy * np.sin(angle)) / wavelength + phase) x = np.arange(det_resp.shape[0]) y = np.arange(det_resp.shape[1]) xx, yy = np.meshgrid(x, y, indexing='ij') # Prepare the starting parameters amp = 0.02 # Roughly a 2% effect scale, quad = 0.0, 0.0 # Assume the amplitude is constant over the detector wavelength = np.sqrt(det_resp.shape[0] ** 2 + det_resp.shape[1] ** 2) / 31.5 # 31-32 cycles of the pattern from corner to corner phase, angle = 0.0, -45.34 # No phase, and a decent guess at the angle p0 = [amp, scale, quad, phase, wavelength, angle] this_bpm = gpmask & (np.abs(det_resp-1) < 0.1) # Only expect this to be a 5% effect popt, pcov = curve_fit(sinfunc2d, (xx[this_bpm], yy[this_bpm]), det_resp[this_bpm], p0=p0) return sinfunc2d((xx, yy), *popt)
[docs] class KeckKCRMSpectrograph(KeckKCWIKCRMSpectrograph): """ Child to handle Keck/KCRM specific code """ name = 'keck_kcrm' camera = 'KCRM' url = 'https://www2.keck.hawaii.edu/inst/kcwi/' # TODO :: Need to update this website header_name = 'KCRM' comment = 'Supported setups: RL, RM1, RM2, RH3; see :doc:`keck_kcwi`'
[docs] def get_detector_par(self, det, hdu=None): """ Return metadata for the selected detector. .. warning:: Many of the necessary detector parameters are read from the file header, meaning the ``hdu`` argument is effectively **required** for KCRM. The optional use of ``hdu`` is only viable for automatically generated documentation. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ if hdu is None: binning = '2,2' specflip = None numamps = None gainarr = None ronarr = None # dsecarr = None # msgs.error("A required keyword argument (hdu) was not supplied") else: # Some properties of the image binning = self.compound_meta(self.get_headarr(hdu), "binning") nampsxy = hdu[0].header['NAMPSXY'].split() numamps = int(nampsxy[0]) * int(nampsxy[1]) amps = self.get_amplifiers(numamps) specflip = False gainarr = np.zeros(numamps) ronarr = np.zeros(numamps) # Set this to zero (determine the readout noise from the overscan regions) for aa, amp in enumerate(amps): # Assign the gain for this amplifier gainarr[aa] = hdu[0].header["GAIN{0:1d}".format(amp)] detector = dict(det = det, binning = binning, dataext = 0, specaxis = 0, specflip = specflip, spatflip = True, # Due to the extra mirror, the slices are flipped relative to KCWI platescale = 0.145728, # arcsec/pixel TODO :: Need to double check this darkcurr = None, # e-/pixel/hour TODO :: Need to check this. mincounts = -1e10, saturation = 65535., nonlinear = 0.95, # For lack of a better number! numamplifiers = numamps, gain = gainarr, ronoise = ronarr, # These are never used because the image reader sets these up using the file headers data. # datasec = dsecarr, #.copy(), # <-- This is provided in the header # oscansec = dsecarr, #.copy(), # <-- This is provided in the header ) # Return return detector_container.DetectorContainer(**detector)
[docs] def get_amplifiers(self, numamps): """ Obtain a list of the amplifier ID numbers Args: numamps (:obj:`int`): Number of amplifiers used for readout Returns: :obj:`list`: A list (of length numamps) containing the ID number of the amplifiers used for readout """ if numamps == 2: return [1, 3] elif numamps == 4: return [0, 1, 2, 3] else: msgs.error("PypeIt only supports 2 or 4 amplifier readout of KCRM data")
[docs] def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the PypeIt-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ super().init_meta() self.meta['dispname'] = dict(ext=0, card='RGRATNAM') self.meta['dispangle'] = dict(ext=0, card='RGRANGLE', rtol=0.01) self.meta['cenwave'] = dict(ext=0, card='RCWAVE', rtol=0.01)
[docs] def raw_header_cards(self): """ Return additional raw header cards to be propagated in downstream output files for configuration identification. The list of raw data FITS keywords should be those used to populate the :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.configuration_keys` or are used in :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.config_specific_par` for a particular spectrograph, if different from the name of the PypeIt metadata keyword. This list is used by :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.subheader_for_spec` to include additional FITS keywords in downstream output files. Returns: :obj:`list`: List of keywords from the raw data files that should be propagated in output files. """ return ['RGRATNAM', 'IFUNAM', 'RGRANGLE']
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() # Subtract the detector pattern from certain frames. # NOTE: The pattern subtraction is time-consuming, meaning we don't # perform it (by default) for the high S/N pixel flat images but we do # for everything else. par['calibrations']['biasframe']['process']['use_pattern'] = False par['calibrations']['darkframe']['process']['use_pattern'] = False par['calibrations']['pixelflatframe']['process']['use_pattern'] = False par['calibrations']['illumflatframe']['process']['use_pattern'] = False par['calibrations']['standardframe']['process']['use_pattern'] = False par['scienceframe']['process']['use_pattern'] = False # Correct the illumflat for pixel-to-pixel sensitivity variations par['calibrations']['illumflatframe']['process']['use_pixelflat'] = True # Make sure the overscan is subtracted from the dark par['calibrations']['darkframe']['process']['use_overscan'] = True # Set the slit edge parameters par['calibrations']['slitedges']['fit_order'] = 4 par['calibrations']['slitedges']['pad'] = 2 # Need to pad out the tilts for the astrometric transform when creating a datacube. par['calibrations']['slitedges']['edge_thresh'] = 5 # 5 works well with a range of setups tested by RJC (mostly 1x1 binning) # KCWI has non-uniform spectral resolution across the field-of-view par['calibrations']['wavelengths']['fwhm_spec_order'] = 1 par['calibrations']['wavelengths']['fwhm_spat_order'] = 2 # Alter the method used to combine pixel flats par['calibrations']['pixelflatframe']['process']['combine'] = 'median' par['calibrations']['flatfield']['spec_samp_coarse'] = 20.0 #par['calibrations']['flatfield']['tweak_slits'] = False # Do not tweak the slit edges (we want to use the full slit) par['calibrations']['flatfield']['tweak_slits_thresh'] = 0.0 # Make sure the full slit is used (i.e. when the illumination fraction is > 0.5) par['calibrations']['flatfield']['tweak_slits_maxfrac'] = 0.0 # Make sure the full slit is used (i.e. no padding) par['calibrations']['flatfield']['slit_trim'] = 3 # Trim the slit edges # Relative illumination correction par['calibrations']['flatfield']['slit_illum_relative'] = True # Calculate the relative slit illumination par['calibrations']['flatfield']['slit_illum_ref_idx'] = 14 # The reference index - this should probably be the same for the science frame par['calibrations']['flatfield']['slit_illum_smooth_npix'] = 5 # Sufficiently small value so less structure in relative weights par['calibrations']['flatfield']['fit_2d_det_response'] = True # Include the 2D detector response in the pixelflat. # Sky subtraction parameters par['reduce']['skysub']['bspline_spacing'] = 0.4 par['reduce']['skysub']['joint_fit'] = False return par
[docs] @staticmethod def is_nasmask(hdr): """ Determine if a frame used nod-and-shuffle. Args: hdr (`astropy.io.fits.Header`_): The header of the raw frame. Returns: :obj:`bool`: True if NAS used. """ return 'Mask' in hdr['RNASNAM']
[docs] def get_rawimage(self, raw_file, det): """ Read a raw KCRM data frame Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ fil = utils.find_single_file(f'{raw_file}*', required=True) # Read msgs.info(f'Reading KCWI file: {fil}') hdu = io.fits_open(fil) detpar = self.get_detector_par(det if det is not None else 1, hdu=hdu) head0 = hdu[0].header raw_img = hdu[detpar['dataext']].data.astype(float) # Some properties of the image nampsxy = head0['NAMPSXY'].split() numamps = int(nampsxy[0]) * int(nampsxy[1]) amps = self.get_amplifiers(numamps) # Exposure time (used by ProcessRawImage) headarr = self.get_headarr(hdu) exptime = self.get_meta_value(headarr, 'exptime') # get the x and y binning factors... #binning = self.get_meta_value(headarr, 'binning') # Always assume normal FITS header formatting one_indexed = True include_last = True for section in ['DSEC', 'BSEC']: # Initialize the image (0 means no amplifier) pix_img = np.zeros(raw_img.shape, dtype=int) for aa, ampid in enumerate(amps): # Get the data section sec = head0[section+"{0:1d}".format(ampid)] # Convert the data section from a string to a slice # TODO :: RJC - I think something has changed here... and the BPM is flipped (or not flipped) for different amp modes. # RJC - Note, KCWI records binned sections, so there's no need to pass binning in as an argument datasec = parse.sec2slice(sec, one_indexed=one_indexed, include_end=include_last, require_dim=2) # Flip the datasec datasec = datasec[::-1] # Assign the amplifier pix_img[datasec] = aa+1 # Finish if section == 'DSEC': rawdatasec_img = pix_img.copy() elif section == 'BSEC': oscansec_img = pix_img.copy() # Return return detpar, raw_img, hdu, exptime, rawdatasec_img, oscansec_img