Source code for pypeit.spectrographs.mmt_binospec

"""
Module for MMT/BINOSPEC specific methods.

.. include:: ../include/links.rst
"""
import numpy as np

from pypeit import msgs
from pypeit import telescopes
from pypeit import utils
from pypeit import io
from pypeit.core import framematch
from pypeit.spectrographs import spectrograph
from pypeit.core import parse
from pypeit.images import detector_container


[docs]class MMTBINOSPECSpectrograph(spectrograph.Spectrograph): """ Child to handle MMT/BINOSPEC specific code """ ndet = 2 name = 'mmt_binospec' telescope = telescopes.MMTTelescopePar() camera = 'BINOSPEC' url = 'https://lweb.cfa.harvard.edu/mmti/binospec.html' header_name = 'Binospec' supported = True
[docs] def get_detector_par(self, det, hdu=None): """ Return metadata for the selected detector. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. If not provided, frame-dependent parameters are set to a default. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ # Binning binning = '1,1' if hdu is None else self.get_meta_value(self.get_headarr(hdu), 'binning') # Detector 1 detector_dict1 = dict( binning = binning, det = 1, dataext = 1, specaxis = 0, specflip = False, spatflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.24, darkcurr = 3.6, #e-/pixel/hour (=0.001 e-/pixel/s) -- pulled from the ETC saturation = 65535., nonlinear = 0.95, #ToDO: To Be update mincounts = -1e10, numamplifiers = 4, gain = np.atleast_1d([1.085,1.046,1.042,0.975]), ronoise = np.atleast_1d([3.2,3.2,3.2,3.2]), ) # Detector 2 detector_dict2 = detector_dict1.copy() detector_dict2.update(dict( det=2, dataext=2, gain=np.atleast_1d([1.028,1.115,1.047,1.045]), #ToDo: FW measures 1.115 for amp2 but 1.163 in IDL pipeline ronoise=np.atleast_1d([3.6,3.6,3.6,3.6]) )) # Instantiate detector_dicts = [detector_dict1, detector_dict2] return detector_container.DetectorContainer(**detector_dicts[det-1])
[docs] def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the PypeIt-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=1, card='RA') self.meta['dec'] = dict(ext=1, card='DEC') self.meta['target'] = dict(ext=1, card='OBJECT') self.meta['decker'] = dict(ext=1, card=None, default='default') self.meta['dichroic'] = dict(ext=1, card=None, default='default') self.meta['binning'] = dict(ext=1, card='CCDSUM', compound=True) self.meta['mjd'] = dict(ext=1, card='MJD') self.meta['exptime'] = dict(ext=1, card='EXPTIME') self.meta['airmass'] = dict(ext=1, card='AIRMASS') # Extras for config and frametyping self.meta['dispname'] = dict(ext=1, card='DISPERS1') self.meta['idname'] = dict(ext=1, card='IMAGETYP') # used for arclamp self.meta['lampstat01'] = dict(ext=1, card='HENEAR') # used for flatlamp, SCRN is actually telescope status self.meta['lampstat02'] = dict(ext=1, card='SCRN') self.meta['instrument'] = dict(ext=1, card='INSTRUME')
[docs] def compound_meta(self, headarr, meta_key): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ if meta_key == 'binning': binspatial, binspec = parse.parse_binning(headarr[1]['CCDSUM']) binning = parse.binning2string(binspec, binspatial) return binning
[docs] def configuration_keys(self): """ Return the metadata keys that define a unique instrument configuration. This list is used by :class:`~pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: :obj:`list`: List of keywords of data pulled from file headers and used to constuct the :class:`~pypeit.metadata.PypeItMetaData` object. """ return ['dispname']
[docs] def raw_header_cards(self): """ Return additional raw header cards to be propagated in downstream output files for configuration identification. The list of raw data FITS keywords should be those used to populate the :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.configuration_keys` or are used in :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.config_specific_par` for a particular spectrograph, if different from the name of the PypeIt metadata keyword. This list is used by :meth:`~pypeit.spectrographs.spectrograph.Spectrograph.subheader_for_spec` to include additional FITS keywords in downstream output files. Returns: :obj:`list`: List of keywords from the raw data files that should be propagated in output files. """ return ['DISPERS1']
[docs] @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of PypeIt methods. """ par = super().default_pypeit_par() # Wavelengths # 1D wavelength solution par['calibrations']['wavelengths']['rms_thresh_frac_fwhm'] = 0.125 par['calibrations']['wavelengths']['sigdetect'] = 5. par['calibrations']['wavelengths']['fwhm']= 4.0 par['calibrations']['wavelengths']['lamps'] = ['ArI', 'ArII'] #par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['lamps'] = ['HeI', 'NeI', 'ArI', 'ArII'] # Tilt and slit parameters par['calibrations']['tilts']['tracethresh'] = 10.0 par['calibrations']['tilts']['spat_order'] = 6 par['calibrations']['tilts']['spec_order'] = 6 par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Processing steps turn_off = dict(use_biasimage=False, use_darkimage=False) par.reset_all_processimages_par(**turn_off) # Extraction par['reduce']['skysub']['bspline_spacing'] = 0.8 par['reduce']['extraction']['sn_gauss'] = 4.0 ## Do not perform global sky subtraction for standard stars par['reduce']['skysub']['global_sky_std'] = False # Flexure par['flexure']['spec_method'] = 'boxcar' # cosmic ray rejection parameters for science frames par['scienceframe']['process']['sigclip'] = 5.0 par['scienceframe']['process']['objlim'] = 2.0 # Set the default exposure time ranges for the frame typing par['calibrations']['standardframe']['exprng'] = [None, 100] par['calibrations']['arcframe']['exprng'] = [20, None] par['calibrations']['darkframe']['exprng'] = [20, None] par['scienceframe']['exprng'] = [20, None] # Sensitivity function parameters par['sensfunc']['polyorder'] = 7 par['sensfunc']['IR']['telgridfile'] = 'TellPCA_3000_26000_R10000.fits' return par
[docs] def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. Args: scifile (:obj:`str`): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`~pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set adjusted for configuration specific parameter values. """ par = super().config_specific_par(scifile, inp_par=inp_par) grating = self.get_meta_value(scifile, 'dispname') if grating == 'x270': par['calibrations']['wavelengths']['reid_arxiv'] = 'mmt_binospec_270.fits' if grating == 'x600': par['calibrations']['wavelengths']['reid_arxiv'] = 'mmt_binospec_600.fits' if grating == 'x1000': par['calibrations']['wavelengths']['reid_arxiv'] = 'mmt_binospec_1000.fits' return par
[docs] def bpm(self, filename, det, shape=None, msbias=None): """ Generate a default bad-pixel mask. Even though they are both optional, either the precise shape for the image (``shape``) or an example file that can be read to get the shape (``filename`` using :func:`get_image_shape`) *must* be provided. Args: filename (:obj:`str` or None): An example file to use to get the image shape. det (:obj:`int`): 1-indexed detector number to use when getting the image shape from the example file. shape (tuple, optional): Processed image shape Required if filename is None Ignored if filename is not None msbias (`numpy.ndarray`_, optional): Processed bias frame used to identify bad pixels Returns: `numpy.ndarray`_: An integer array with a masked value set to 1 and an unmasked value set to 0. All values are set to 0. """ # Call the base-class method to generate the empty bpm bpm_img = super().bpm(filename, det, shape=shape, msbias=msbias) if det == 1: msgs.info("Using hard-coded BPM for det=1 on BINOSPEC") # TODO: Fix this # Get the binning hdu = io.fits_open(filename) binning = hdu[1].header['CCDSUM'] hdu.close() # Apply the mask xbin, ybin = int(binning.split(' ')[0]), int(binning.split(' ')[1]) bpm_img[2447 // xbin, 2056 // ybin:4112 // ybin] = 1 bpm_img[2111 // xbin, 2056 // ybin:4112 // ybin] = 1 elif det == 2: msgs.info("Using hard-coded BPM for det=2 on BINOSPEC") # Get the binning hdu = io.fits_open(filename) binning = hdu[5].header['CCDSUM'] hdu.close() # Apply the mask xbin, ybin = int(binning.split(' ')[0]), int(binning.split(' ')[1]) #ToDo: Need to double check the BPM for detector 2 ## Identified by FW from flat observations bpm_img[3336 // xbin, 0:2056 // ybin] = 1 bpm_img[3337 // xbin, 0:2056 // ybin] = 1 bpm_img[4056 // xbin, 0:2056 // ybin] = 1 bpm_img[3011 // xbin, 2057 // ybin:4112 // ybin] = 1 ## Got from IDL pipeline #bpm_img[2378 // xbin, 0:2056 // ybin] = 1 #bpm_img[2096 // xbin, 2057 // ybin:4112 // ybin] = 1 #bpm_img[1084 // xbin, 0:2056 // ybin] = 1 return bpm_img
[docs] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype == 'science': return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'stowed') & (fitstbl['exptime'] > 100.0) if ftype == 'standard': return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'stowed') & (fitstbl['exptime'] <= 100.0) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['lampstat01'] == 'on') if ftype in ['pixelflat', 'trace', 'illumflat']: return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'deployed') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool)
[docs] def get_rawimage(self, raw_file, det): """ Read raw images and generate a few other bits and pieces that are key for image processing. Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ fil = utils.find_single_file(f'{raw_file}*', required=True) # Read msgs.info(f'Reading BINOSPEC file: {fil}') hdu = io.fits_open(fil) head1 = hdu[1].header # TOdO Store these parameters in the DetectorPar. # Number of amplifiers detector_par = self.get_detector_par(det if det is not None else 1, hdu=hdu) numamp = detector_par['numamplifiers'] # get the x and y binning factors... binning = head1['CCDSUM'] xbin, ybin = [int(ibin) for ibin in binning.split(' ')] # First read over the header info to determine the size of the output array... datasec = head1['DATASEC'] x1, x2, y1, y2 = np.array(parse.load_sections(datasec, fmt_iraf=False)).flatten() nxb = x1 - 1 # determine the output array size... nx = (x2 - x1 + 1) * int(numamp/2) + nxb * int(numamp/2) ny = (y2 - y1 + 1) * int(numamp/2) #datasize = head1['DETSIZE'] #_, nx, _, ny = np.array(parse.load_sections(datasize, fmt_iraf=False)).flatten() # allocate output array... array = np.zeros((nx, ny)) rawdatasec_img = np.zeros_like(array, dtype=int) oscansec_img = np.zeros_like(array, dtype=int) if det == 1: # A DETECTOR order = range(1, 5, 1) elif det == 2: # B DETECTOR order = range(5, 9, 1) # insert extensions into calibration image... for kk, jj in enumerate(order): # grab complete extension... data, overscan, datasec, biassec = binospec_read_amp(hdu, jj) # insert components into output array... inx = data.shape[0] xs = inx * kk xe = xs + inx iny = data.shape[1] ys = iny * kk yn = ys + iny b1, b2, b3, b4 = np.array(parse.load_sections(biassec, fmt_iraf=False)).flatten() if kk == 0: array[b2:inx+b2,:iny] = data #*1.028 rawdatasec_img[b2:inx+b2,:iny] = kk + 1 array[:b2,:iny] = overscan oscansec_img[2:b2,:iny] = kk + 1 elif kk == 1: array[b2+inx:2*inx+b2,:iny] = np.flipud(data) #* 1.115 rawdatasec_img[b2+inx:2*inx+b2:,:iny] = kk + 1 array[2*inx+b2:,:iny] = overscan oscansec_img[2*inx+b2:,:iny] = kk + 1 elif kk == 2: array[b2+inx:2*inx+b2,iny:] = np.fliplr(np.flipud(data)) #* 1.047 rawdatasec_img[b2+inx:2*inx+b2,iny:] = kk + 1 array[2*inx+b2:, iny:] = overscan oscansec_img[2*inx+b2:, iny:] = kk + 1 elif kk == 3: array[b2:inx+b2,iny:] = np.fliplr(data) #* 1.045 rawdatasec_img[b2:inx+b2,iny:] = kk + 1 array[:b2,iny:] = overscan oscansec_img[2:b2,iny:] = kk + 1 # Need the exposure time exptime = hdu[self.meta['exptime']['ext']].header[self.meta['exptime']['card']] # Return, transposing array back to orient the overscan properly return detector_par, np.fliplr(np.flipud(array)), hdu, exptime, np.fliplr(np.flipud(rawdatasec_img)), \ np.fliplr(np.flipud(oscansec_img))
[docs]def binospec_read_amp(inp, ext): """ Read one amplifier of an MMT BINOSPEC multi-extension FITS image Parameters ---------- inp: tuple (str,int) filename, extension (hdu,int) FITS hdu, extension Returns ------- data predata postdata x1 y1 ;------------------------------------------------------------------------ function lris_read_amp, filename, ext, $ linebias=linebias, nobias=nobias, $ predata=predata, postdata=postdata, header=header, $ x1=x1, x2=x2, y1=y1, y2=y2, GAINDATA=gaindata ;------------------------------------------------------------------------ ; Read one amp from LRIS mHDU image ;------------------------------------------------------------------------ """ # Parse input if isinstance(inp, str): hdu = io.fits_open(inp) else: hdu = inp # get entire extension... temp = hdu[ext].data.transpose() nxt = temp.shape[0] nyt = temp.shape[1] # parse the DETSEC keyword to determine the size of the array. header = hdu[ext].header # parse the DATASEC keyword to determine the size of the science region (unbinned) datasec = header['DATASEC'] xdata1, xdata2, ydata1, ydata2 = np.array(parse.load_sections(datasec, fmt_iraf=False)).flatten() datasec = '[{:}:{:},{:}:{:}]'.format(xdata1 - 1, xdata2, ydata1-1, ydata2) #TODO: Since pypeit can only subtract overscan along one axis, I'm subtract the overscan here using median method. # Overscan X-axis if xdata1 > 1: overscanx = temp[2:xdata1-1, :] overscanx_vec = np.median(overscanx, axis=0) temp = temp - overscanx_vec[None,:] data = temp[xdata1 - 1:xdata2, ydata1 -1 : ydata2] ## Overscan Y-axis if ydata2<nyt: os1, os2 = ydata2+1, nyt-1 overscany = temp[xdata1 - 1:xdata2, ydata2:os2] overscany_vec = np.median(overscany, axis=1) data = data - overscany_vec[:,None] # Overscan biassec = '[0:{:},{:}:{:}]'.format(xdata1-1, ydata1-1, ydata2) xos1, xos2, yos1, yos2 = np.array(parse.load_sections(biassec, fmt_iraf=False)).flatten() overscan = np.zeros_like(temp[xos1:xos2, yos1:yos2]) # Give a zero fake overscan at the edge of each amplifiers #overscan = temp[xos1:xos2,yos1:yos2] return data, overscan, datasec, biassec