"""
Module for Keck/HIRES
.. include:: ../include/links.rst
"""
import os
from IPython import embed
import numpy as np
from scipy.io import readsav
from astropy.table import Table
from astropy import time
from pypeit import msgs
from pypeit import telescopes
from pypeit import io
from pypeit.core import parse
from pypeit.core import framematch
from pypeit.spectrographs import spectrograph
from pypeit.images import detector_container
from pypeit.par import pypeitpar
from pypeit.images.mosaic import Mosaic
from pypeit.core.mosaic import build_image_mosaic_transform
[docs]
class HIRESMosaicLookUp:
"""
Provides the geometry required to mosaic Keck HIRES data.
Similar to :class:`~pypeit.spectrographs.gemini_gmos.GeminiGMOSMosaicLookUp`
"""
# Original
geometry = {
'MSC01': {'default_shape': (6168, 3990),
'blue_det': {'shift': (-2048.0 - 41.0, -3.), 'rotation': 0.},
'green_det': {'shift': (0., 0.), 'rotation': 0.},
'red_det': {'shift': (2048.0 + 53.0, 0.), 'rotation': 0.}},
}
# adding -3 to the blue_det shift in the y-direction helps to deal with the gap
# in the 2D fit wavelength solution between the blue and green detectors
[docs]
class KECKHIRESSpectrograph(spectrograph.Spectrograph):
"""
Child to handle KECK/HIRES specific code.
This spectrograph is not yet supported.
"""
ndet = 3
name = 'keck_hires'
telescope = telescopes.KeckTelescopePar()
camera = 'HIRES'
url = 'https://www2.keck.hawaii.edu/inst/hires/'
header_name = 'HIRES'
url = 'https://www2.keck.hawaii.edu/inst/hires/'
pypeline = 'Echelle'
ech_fixed_format = False
supported = False
# TODO before support = True
# 1. Implement flat fielding - DONE
# 2. Test on several different setups - DONE
# 3. Implement PCA extrapolation into the blue
comment = 'Post detector upgrade (~ August 2004). See :doc:`keck_hires`'
# TODO: Place holder parameter set taken from X-shooter VIS for now.
[docs]
@classmethod
def default_pypeit_par(cls):
"""
Return the default parameters to use for this instrument.
Returns:
:class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by
all of PypeIt methods.
"""
par = super().default_pypeit_par()
par['rdx']['detnum'] = [(1,2,3)]
# Adjustments to parameters for Keck HIRES
turn_off_on = dict(use_biasimage=False, use_overscan=True, overscan_method='median')
par.reset_all_processimages_par(**turn_off_on)
# Right now we are using the overscan and not biases becuase the
# standards are read with a different read mode and we don't yet have
# the option to use different sets of biases for different standards,
# or use the overscan for standards but not for science frames
# Set the default exposure time ranges for the frame typing
par['calibrations']['biasframe']['exprng'] = [None, 0.001]
#par['calibrations']['darkframe']['exprng'] = [999999, None] # No dark frames
par['calibrations']['pinholeframe']['exprng'] = [999999, None] # No pinhole frames
par['calibrations']['pixelflatframe']['exprng'] = [None, 60]
par['calibrations']['traceframe']['exprng'] = [None, 60]
par['calibrations']['illumflatframe']['exprng'] = [None, 60]
par['calibrations']['standardframe']['exprng'] = [1, 600]
par['scienceframe']['exprng'] = [601, None]
# Set default processing for slitless_pixflat
par['calibrations']['slitless_pixflatframe']['process']['scale_to_mean'] = True
# Slit tracing
par['calibrations']['slitedges']['edge_thresh'] = 8.0
par['calibrations']['slitedges']['fit_order'] = 8
par['calibrations']['slitedges']['max_shift_adj'] = 0.5
par['calibrations']['slitedges']['trace_thresh'] = 10.
par['calibrations']['slitedges']['left_right_pca'] = True
par['calibrations']['slitedges']['length_range'] = 0.3
par['calibrations']['slitedges']['max_nudge'] = 0.
par['calibrations']['slitedges']['overlap'] = True
par['calibrations']['slitedges']['dlength_range'] = 0.25
par['calibrations']['slitedges']['add_missed_orders'] = True
par['calibrations']['slitedges']['order_width_poly'] = 2
par['calibrations']['slitedges']['order_gap_poly'] = 3
# These are the defaults
par['calibrations']['tilts']['tracethresh'] = 15
par['calibrations']['tilts']['spat_order'] = 3
par['calibrations']['tilts']['spec_order'] = 5 # [5, 5, 5] + 12*[7] # + [5]
# 1D wavelength solution
par['calibrations']['wavelengths']['lamps'] = ['ThAr']
par['calibrations']['wavelengths']['rms_thresh_frac_fwhm'] = 0.1
par['calibrations']['wavelengths']['sigdetect'] = 5.
par['calibrations']['wavelengths']['n_first'] = 3
par['calibrations']['wavelengths']['n_final'] = 4
par['calibrations']['wavelengths']['match_toler'] = 1.5
# Reidentification parameters
par['calibrations']['wavelengths']['method'] = 'echelle'
par['calibrations']['wavelengths']['cc_shift_range'] = (-80.,80.)
par['calibrations']['wavelengths']['cc_thresh'] = 0.6
par['calibrations']['wavelengths']['cc_local_thresh'] = 0.25
par['calibrations']['wavelengths']['reid_cont_sub'] = False
# Echelle parameters
par['calibrations']['wavelengths']['echelle'] = True
par['calibrations']['wavelengths']['ech_nspec_coeff'] = 5
par['calibrations']['wavelengths']['ech_norder_coeff'] = 3
par['calibrations']['wavelengths']['ech_sigrej'] = 2.0
par['calibrations']['wavelengths']['ech_separate_2d'] = True
par['calibrations']['wavelengths']['bad_orders_maxfrac'] = 0.5
# Flats
par['calibrations']['flatfield']['tweak_slits_thresh'] = 0.90
par['calibrations']['flatfield']['tweak_slits_maxfrac'] = 0.10
par['calibrations']['flatfield']['slit_illum_finecorr'] = False
# Extraction
par['reduce']['skysub']['bspline_spacing'] = 0.6
par['reduce']['skysub']['global_sky_std'] = False
# local sky subtraction operates on entire slit
par['reduce']['extraction']['model_full_slit'] = True
# Mask 3 edges pixels since the slit is short, insted of default (5,5)
par['reduce']['findobj']['find_trim_edge'] = [3, 3]
# number of objects
par['reduce']['findobj']['maxnumber_sci'] = 2 # Assume that there is max two object in each order.
par['reduce']['findobj']['maxnumber_std'] = 1 # Assume that there is only one object in each order.
# Sensitivity function parameters
par['sensfunc']['algorithm'] = 'IR'
par['sensfunc']['polyorder'] = 5 #[9, 11, 11, 9, 9, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7]
par['sensfunc']['IR']['telgridfile'] = 'TellPCA_3000_10500_R120000.fits'
par['sensfunc']['IR']['pix_shift_bounds'] = (-40.0,40.0)
# Telluric parameters
# HIRES is usually oversampled, so the helio shift can be large
par['telluric']['pix_shift_bounds'] = (-40.0,40.0)
# Similarly, the resolution guess is higher than it should be
par['telluric']['resln_frac_bounds'] = (0.25,1.25)
# Coadding
par['coadd1d']['wave_method'] = 'log10'
return par
[docs]
def config_specific_par(self, scifile, inp_par=None):
"""
Modify the PypeIt parameters to hard-wired values used for
specific instrument configurations.
Args:
scifile (:obj:`str`):
File to use when determining the configuration and how
to adjust the input parameters.
inp_par (:class:`~pypeit.par.parset.ParSet`, optional):
Parameter set used for the full run of PypeIt. If None,
use :func:`default_pypeit_par`.
Returns:
:class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set
adjusted for configuration specific parameter values.
"""
par = super().config_specific_par(scifile, inp_par=inp_par)
headarr = self.get_headarr(scifile)
bin_spec, bin_spat = parse.parse_binning(self.get_meta_value(headarr, 'binning'))
# slit edges
# NOTE: With add_missed_orders set to True and order_spat_range set to the
# default (None), the code will try to add missing orders over the full
# range of the detector mosaic!
par['calibrations']['slitedges']['order_spat_range'] = [10., 6200./bin_spat]
# wavelength
par['calibrations']['wavelengths']['fwhm'] = 8.0/bin_spec
# Return
return par
[docs]
def configuration_keys(self):
"""
Return the metadata keys that define a unique instrument
configuration.
This list is used by :class:`~pypeit.metadata.PypeItMetaData` to
identify the unique configurations among the list of frames read
for a given reduction.
Returns:
:obj:`list`: List of keywords of data pulled from file headers
and used to constuct the :class:`~pypeit.metadata.PypeItMetaData`
object.
"""
return ['dispname', 'decker', 'filter1', 'echangle', 'xdangle', 'binning']
[docs]
def config_independent_frames(self):
"""
Define frame types that are independent of the fully defined
instrument configuration.
Bias and dark frames are considered independent of a configuration,
but the DATE-OBS keyword is used to assign each to the most-relevant
configuration frame group. See
:func:`~pypeit.metadata.PypeItMetaData.set_configurations`.
Returns:
:obj:`dict`: Dictionary where the keys are the frame types that
are configuration independent and the values are the metadata
keywords that can be used to assign the frames to a configuration
group.
"""
return {'bias': ['dispname', 'binning'], 'dark': ['dispname', 'binning'],
'slitless_pixflat': ['dispname', 'binning']}
[docs]
def pypeit_file_keys(self):
"""
Define the list of keys to be output into a standard PypeIt file.
Returns:
:obj:`list`: The list of keywords in the relevant
:class:`~pypeit.metadata.PypeItMetaData` instance to print to the
:ref:`pypeit_file`.
"""
return super().pypeit_file_keys() + ['hatch', 'lampstat01', 'frameno']
[docs]
def check_frame_type(self, ftype, fitstbl, exprng=None):
"""
Check for frames of the provided type.
Args:
ftype (:obj:`str`):
Type of frame to check. Must be a valid frame type; see
frame-type :ref:`frame_type_defs`.
fitstbl (`astropy.table.Table`_):
The table with the metadata for one or more frames to check.
exprng (:obj:`list`, optional):
Range in the allowed exposure time for a frame of type
``ftype``. See
:func:`pypeit.core.framematch.check_frame_exptime`.
Returns:
`numpy.ndarray`_: Boolean array with the flags selecting the
exposures in ``fitstbl`` that are ``ftype`` type frames.
"""
good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng)
# TODO: Allow for 'sky' frame type, for now include sky in
# 'science' category
if ftype in ['science', 'standard']:
return good_exp & (fitstbl['idname'] == 'Object')
if ftype == 'bias':
return good_exp & (fitstbl['idname'] == 'Bias')
if ftype == 'dark':
return good_exp & (fitstbl['idname'] == 'Dark')
if ftype == 'slitless_pixflat':
return good_exp & (fitstbl['idname'] == 'slitlessFlat')
if ftype in ['illumflat', 'pixelflat', 'trace']:
# Flats and trace frames are typed together
return good_exp & (fitstbl['idname'] == 'IntFlat')
if ftype in ['arc', 'tilt']:
# Arc and tilt frames are typed together
return good_exp & (fitstbl['idname'] == 'Line')
msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype))
return np.zeros(len(fitstbl), dtype=bool)
[docs]
def vet_assigned_ftypes(self, type_bits, fitstbl):
"""
NOTE: this function should only be called when running pypeit_setup,
in order to not overwrite any user-provided frame types.
This method checks the assigned frame types for consistency.
For frames that are assigned both the science and standard types,
this method chooses the one that is most likely, by checking if the
frames are within 10 arcmin of a listed standard star.
In addition, for this instrument, if a frame is assigned both a
pixelflat and slitless_pixflat type, the pixelflat type is removed.
NOTE: if the same frame is assigned to multiple configurations, this
method will remove the pixelflat type for all configurations, i.e.,
it is not possible to use slitless_pixflat type for one calibration group
and pixelflat for another.
Args:
type_bits (`numpy.ndarray`_):
Array with the frame types assigned to each frame.
fitstbl (:class:`~pypeit.metadata.PypeItMetaData`):
The class holding the metadata for all the frames.
Returns:
`numpy.ndarray`_: The updated frame types.
"""
type_bits = super().vet_assigned_ftypes(type_bits, fitstbl)
# If both pixelflat and slitless_pixflat are assigned to the same frame, remove pixelflat
# where slitless_pixflat is assigned
slitless_idx = fitstbl.type_bitmask.flagged(type_bits, flag='slitless_pixflat')
# where pixelflat is assigned
pixelflat_idx = fitstbl.type_bitmask.flagged(type_bits, flag='pixelflat')
# find configurations where both pixelflat and slitless_pixflat are assigned
pixflat_match = np.zeros(len(fitstbl), dtype=bool)
for f, frame in enumerate(fitstbl):
if pixelflat_idx[f]:
match_config_values = []
for slitless in fitstbl[slitless_idx]:
match_config_values.append(np.all([frame[c] == slitless[c]
for c in self.config_independent_frames()['slitless_pixflat']]))
pixflat_match[f] = np.any(match_config_values)
# remove pixelflat from the type_bits
type_bits[pixflat_match] = fitstbl.type_bitmask.turn_off(type_bits[pixflat_match], 'pixelflat')
return type_bits
[docs]
def parse_raw_files(self, fitstbl, det=1, ftype=None):
"""
Parse the list of raw files with given frame type and detector.
This is spectrograph-specific, and it is not defined for all
spectrographs.
Since different slitless_pixflat frames are usually taken for
each of the three detectors, this method parses the slitless_pixflat
frames and returns the correct one for the requested detector.
Args:
fitstbl (`astropy.table.Table`_):
Table with metadata of the raw files to parse.
det (:obj:`int`, optional):
1-indexed detector number to parse.
ftype (:obj:`str`, optional):
Frame type to parse. If None, no frames are parsed
and the indices of all frames are returned.
Returns:
`numpy.ndarray`_: The indices of the raw files in the fitstbl that are parsed.
"""
if ftype == 'slitless_pixflat':
# Check for the required info
if len(fitstbl) == 0:
msgs.warn('Fitstbl provided is emtpy. No parsing done.')
# return empty array
return np.array([], dtype=int)
elif det is None:
msgs.warn('Detector number must be provided to parse slitless_pixflat frames. No parsing done.')
# return index array of length of fitstbl
return np.arange(len(fitstbl))
# how many unique xdangle values are there?
# If they are 3, then we have a different slitless flat file per detector
xdangles = np.unique(np.int32(fitstbl['xdangle'].value))
if len(xdangles) == 3:
sort_xdagles = np.argsort(xdangles)
# xdagles: -5 for red(det=3), -4 for green (det=2), -3 for blue (det=1) dets
# select the corresponding files for the requested detector
if det == 1:
# blue detector
return np.where(np.int32(fitstbl['xdangle'].value) == -3)[0]
elif det == 2:
# green detector
return np.where(np.int32(fitstbl['xdangle'].value) == -4)[0]
elif det == 3:
# red detector
return np.where(np.int32(fitstbl['xdangle'].value) == -5)[0]
else:
msgs.warn('The provided list of slitless_pixflat frames does not have exactly 3 unique XDANGLE values. '
'Pypeit cannot determine which slitless_pixflat frame corresponds to the requested detector. '
'All frames will be used.')
return np.arange(len(fitstbl))
else:
return super().parse_raw_files(fitstbl, det=det, ftype=ftype)
[docs]
def get_rawimage(self, raw_file, det, spectrim=20):
"""
Read raw images and generate a few other bits and pieces
that are key for image processing.
Based on readmhdufits.pro
Parameters
----------
raw_file : :obj:`str`
File to read
det : :obj:`int`
1-indexed detector to read
Returns
-------
detector_par : :class:`pypeit.images.detector_container.DetectorContainer`
Detector metadata parameters.
raw_img : `numpy.ndarray`_
Raw image for this detector.
hdu : `astropy.io.fits.HDUList`_
Opened fits file
exptime : :obj:`float`
Exposure time read from the file header
rawdatasec_img : `numpy.ndarray`_
Data (Science) section of the detector as provided by setting the
(1-indexed) number of the amplifier used to read each detector
pixel. Pixels unassociated with any amplifier are set to 0.
oscansec_img : `numpy.ndarray`_
Overscan section of the detector as provided by setting the
(1-indexed) number of the amplifier used to read each detector
pixel. Pixels unassociated with any amplifier are set to 0.
"""
# TODO -- Put a check in here to avoid data using the
# original CCD (1 chip)
# Check for file; allow for extra .gz, etc. suffix
if not os.path.isfile(raw_file):
msgs.error(f'{raw_file} not found!')
hdu = io.fits_open(raw_file)
head0 = hdu[0].header
# Get post, pre-pix values
precol = head0['PRECOL']
postpix = head0['POSTPIX']
preline = head0['PRELINE']
postline = head0['POSTLINE']
detlsize = head0['DETLSIZE']
x0, x_npix, y0, y_npix = np.array(parse.load_sections(detlsize)).flatten()
# get the x and y binning factors...
#binning = head0['BINNING']
binning = self.get_meta_value(self.get_headarr(hdu), 'binning')
# # TODO: JFH I think this works fine
# if binning != '3,1':
# msgs.warn("This binning for HIRES might not work. But it might..")
# We are flipping this because HIRES stores the binning oppostire of the (binspec, binspat) pypeit convention.
binspatial, binspec = parse.parse_binning(head0['BINNING'])
# Validate the entered (list of) detector(s)
nimg, _det = self.validate_det(det)
# Grab the detector or mosaic parameters
mosaic = None if nimg == 1 else self.get_mosaic_par(det, hdu=hdu)
detectors = [self.get_detector_par(det, hdu=hdu)] if nimg == 1 else mosaic.detectors
# get the chips to read in
# DP: I don't know if this needs to still exist. I believe det is never None
if det is None:
chips = range(self.ndet)
else:
chips = [d-1 for d in _det] # Indexing starts at 0 here
# get final datasec and oscan size (it's the same for every chip so
# it's safe to determine it outsize the loop)
# Create final image
if det is None:
# JFH: TODO is this a good idea?
image = np.zeros((x_npix, y_npix + 4 * postpix))
rawdatasec_img = np.zeros_like(image, dtype=int)
oscansec_img = np.zeros_like(image, dtype=int)
else:
data, oscan = hires_read_1chip(hdu, chips[0] + 1)
image = np.zeros((nimg, data.shape[0], data.shape[1] + oscan.shape[1]))
rawdatasec_img = np.zeros_like(image, dtype=int)
oscansec_img = np.zeros_like(image, dtype=int)
# Loop over the chips
for ii, tt in enumerate(chips):
image_ii, oscan_ii = hires_read_1chip(hdu, tt + 1)
# Indexing
x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 = indexing(tt, postpix, det=det, xbin=binspatial, ybin=binspec)
# Fill
image[ii, y1:y2, x1:x2] = image_ii
image[ii, o_y1:o_y2, o_x1:o_x2] = oscan_ii
rawdatasec_img[ii, y1:y2-spectrim//binspec, x1:x2] = 1 # Amp
oscansec_img[ii, o_y1:o_y2-spectrim//binspec, o_x1:o_x2] = 1 # Amp
exptime = hdu[self.meta['exptime']['ext']].header[self.meta['exptime']['card']]
# Return
# Handle returning both single and multiple images
if nimg == 1:
return detectors[0], image[0], hdu, exptime, rawdatasec_img[0], oscansec_img[0]
return mosaic, image, hdu, exptime, rawdatasec_img, oscansec_img
[docs]
def get_mosaic_par(self, mosaic, hdu=None, msc_ord=0):
"""
Return the hard-coded parameters needed to construct detector mosaics
from unbinned images.
The parameters expect the images to be trimmed and oriented to follow
the PypeIt shape convention of ``(nspec,nspat)``. For returned
lists, the length of the list is the same as the number of detectors in
the mosaic, and they are ordered by the detector number.
Args:
mosaic (:obj:`tuple`):
Tuple of detector numbers used to construct the mosaic. Must be
one among the list of possible mosaics as hard-coded by the
:func:`allowed_mosaics` function.
hdu (`astropy.io.fits.HDUList`_, optional):
The open fits file with the raw image of interest. If not
provided, frame-dependent detector parameters are set to a
default. BEWARE: If ``hdu`` is not provided, the binning is
assumed to be `1,1`, which will cause faults if applied to
binned images!
msc_ord (:obj:`int`, optional):
Order of the interpolation used to construct the mosaic.
Returns:
:class:`~pypeit.images.mosaic.Mosaic`: Object with the mosaic *and*
detector parameters.
"""
# Validate the entered (list of) detector(s)
nimg, _ = self.validate_det(mosaic)
# Index of mosaic in list of allowed detector combinations
mosaic_id = self.allowed_mosaics.index(mosaic)+1
detid = f'MSC0{mosaic_id}'
# Get the detectors
detectors = np.array([self.get_detector_par(det, hdu=hdu) for det in mosaic])
# Binning *must* be consistent for all detectors
if any(d.binning != detectors[0].binning for d in detectors[1:]):
msgs.error('Binning is somehow inconsistent between detectors in the mosaic!')
# Collect the offsets and rotations for *all unbinned* detectors in the
# full instrument, ordered by the number of the detector. Detector
# numbers must be sequential and 1-indexed.
# See the mosaic documentattion.
msc_geometry = HIRESMosaicLookUp.geometry
expected_shape = msc_geometry[detid]['default_shape']
shift = np.array([(msc_geometry[detid]['blue_det']['shift'][0], msc_geometry[detid]['blue_det']['shift'][1]),
(msc_geometry[detid]['green_det']['shift'][0], msc_geometry[detid]['green_det']['shift'][1]),
(msc_geometry[detid]['red_det']['shift'][0], msc_geometry[detid]['red_det']['shift'][1])])
rotation = np.array([msc_geometry[detid]['blue_det']['rotation'], msc_geometry[detid]['green_det']['rotation'],
msc_geometry[detid]['red_det']['rotation']])
# The binning and process image shape must be the same for all images in
# the mosaic
binning = tuple(int(b) for b in detectors[0].binning.split(','))
shape = tuple(n // b for n, b in zip(expected_shape, binning))
msc_sft = [None]*nimg
msc_rot = [None]*nimg
msc_tfm = [None]*nimg
for i in range(nimg):
msc_sft[i] = shift[i]
msc_rot[i] = rotation[i]
# binning is here in the PypeIt convention of (binspec, binspat), but the mosaic tranformations
# occur in the raw data frame, which flips spectral and spatial
msc_tfm[i] = build_image_mosaic_transform(shape, msc_sft[i], msc_rot[i], tuple(reversed(binning)))
return Mosaic(mosaic_id, detectors, shape, np.array(msc_sft), np.array(msc_rot),
np.array(msc_tfm), msc_ord)
@property
def allowed_mosaics(self):
"""
Return the list of allowed detector mosaics.
Keck/HIRES only allows for mosaicing all three detectors.
Returns:
:obj:`list`: List of tuples, where each tuple provides the 1-indexed
detector numbers that can be combined into a mosaic and processed by
PypeIt.
"""
return [(1,2,3)]
@property
def default_mosaic(self):
return self.allowed_mosaics[0]
[docs]
def get_detector_par(self, det, hdu=None):
"""
Return metadata for the selected detector.
Args:
det (:obj:`int`):
1-indexed detector number.
hdu (`astropy.io.fits.HDUList`_, optional):
The open fits file with the raw image of interest. If not
provided, frame-dependent parameters are set to a default.
Returns:
:class:`~pypeit.images.detector_container.DetectorContainer`:
Object with the detector metadata.
"""
# Binning
binning = '1,1' if hdu is None else self.get_meta_value(self.get_headarr(hdu), 'binning')
# Detector 1
detector_dict1 = dict(
binning = binning,
det = 1,
dataext = 1,
specaxis = 0,
specflip = False,
spatflip = False,
platescale = 0.135,
darkcurr = 0.0, # e-/pixel/hour
saturation = 65535.,
nonlinear = 0.7, # Website says 0.6, but we'll push it a bit
mincounts = -1e10,
numamplifiers = 1,
ronoise = np.atleast_1d([2.8]),
)
# Detector 2.
detector_dict2 = detector_dict1.copy()
detector_dict2.update(dict(
det=2,
dataext=2,
ronoise=np.atleast_1d([3.1])
))
# Detector 3,.
detector_dict3 = detector_dict1.copy()
detector_dict3.update(dict(
det=3,
dataext=3,
ronoise=np.atleast_1d([3.1])
))
# Set gain
# https://www2.keck.hawaii.edu/inst/hires/instrument_specifications.html
if hdu is None or hdu[0].header['CCDGAIN'].strip() == 'low':
detector_dict1['gain'] = np.atleast_1d([1.9])
detector_dict2['gain'] = np.atleast_1d([2.1])
detector_dict3['gain'] = np.atleast_1d([2.1])
elif hdu[0].header['CCDGAIN'].strip() == 'high':
detector_dict1['gain'] = np.atleast_1d([0.78])
detector_dict2['gain'] = np.atleast_1d([0.86])
detector_dict3['gain'] = np.atleast_1d([0.84])
else:
msgs.error("Bad CCDGAIN mode for HIRES")
# Instantiate
detector_dicts = [detector_dict1, detector_dict2, detector_dict3]
return detector_container.DetectorContainer( **detector_dicts[det-1])
[docs]
def get_echelle_angle_files(self):
""" Pass back the files required
to run the echelle method of wavecalib
Returns:
list: List of files
"""
angle_fits_file = 'keck_hires_angle_fits.fits'
composite_arc_file = 'keck_hires_composite_arc.fits'
return [angle_fits_file, composite_arc_file]
[docs]
def order_platescale(self, order_vec, binning=None):
"""
Return the platescale for each echelle order.
This routine is only defined for echelle spectrographs, and it is
undefined in the base class.
Args:
order_vec (`numpy.ndarray`_):
The vector providing the order numbers.
binning (:obj:`str`, optional):
The string defining the spectral and spatial binning.
Returns:
`numpy.ndarray`_: An array with the platescale for each order
provided by ``order``.
"""
det = self.get_detector_par(1)
binspectral, binspatial = parse.parse_binning(binning)
# Assume no significant variation (which is likely true)
return np.ones_like(order_vec)*det.platescale*binspatial
[docs]
def indexing(itt, postpix, det=None,xbin=1,ybin=1):
"""
Some annoying book-keeping for instrument placement.
Parameters
----------
itt : int
postpix : int
det : int, optional
Returns
-------
"""
# Deal with single chip
if det is not None:
tt = 0
else:
tt = itt
ii = int(np.round(2048/xbin))
jj = int(np.round(4096/ybin))
# y indices
y1, y2 = 0, jj
o_y1, o_y2 = y1, y2
# x
x1, x2 = (tt%4)*ii, (tt%4 + 1)*ii
if det is None:
o_x1 = 4*ii + (tt%4)*postpix
else:
o_x1 = ii + (tt%4)*postpix
o_x2 = o_x1 + postpix
# Return
return x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2
[docs]
def hires_read_1chip(hdu,chipno):
""" Read one of the HIRES detectors
Parameters
----------
hdu : HDUList
chipno : int
Returns
-------
data : ndarray
oscan : ndarray
"""
# Extract datasec from header
datsec = hdu[chipno].header['DATASEC']
detsec = hdu[chipno].header['DETSEC']
postpix = hdu[0].header['POSTPIX']
precol = hdu[0].header['PRECOL']
x1_dat, x2_dat, y1_dat, y2_dat = np.array(parse.load_sections(datsec)).flatten()
x1_det, x2_det, y1_det, y2_det = np.array(parse.load_sections(detsec)).flatten()
# This rotates the image to be increasing wavelength to the top
#data = np.rot90((hdu[chipno].data).T, k=2)
#nx=data.shape[0]
#ny=data.shape[1]
# Science data
fullimage = hdu[chipno].data
data = fullimage[x1_dat:x2_dat,y1_dat:y2_dat]
# Overscan
oscan = fullimage[:,y2_dat:]
# Flip as needed
if x1_det > x2_det:
data = np.flipud(data)
oscan = np.flipud(oscan)
if y1_det > y2_det:
data = np.fliplr(data)
oscan = np.fliplr(oscan)
# Return
return data, oscan